- home
- Advanced Search
- Energy Research
- Embargo
- DE
- DK
- EU
- FI
- Energy Research
- Embargo
- DE
- DK
- EU
- FI
description Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Fleiter, T.; Worrell, E.; Eichhammer, W.;The goal of this paper is to review bottom-up models for industrial energy demand with a particular focus on their capability to model barriers to the adoption of energy-efficient technologies. The integration of barriers into the models is an important prerequisite for a more detailed and realistic modeling of policies for energy efficiency. Particularly with the emergence of more and more varying policy instruments, it also becomes crucial for the models to take account of these policies as well as the barriers they address in a more realistic way. Our review revealed that, despite the broadly evident existence of market failures and barriers for energy-efficient technologies, they are only partly and in a rather aggregated form considered in today's bottom-up models. The state-of-the-art bottom-up model is based on an explicit representation of the technology stock and considers the costs of energy efficiency options in detail. But with regard to barriers, most models only make use of an aggregated approach, like an adjusted discount rate. While some models do not even consider technology costs and energy prices, but instead use exogenous technology diffusion rates, other more advanced models took first steps towards considering barriers in more detail. The latter allows differentiation between multiple parameters that influence technology adoption. Still, even in the most advanced models, only a few of the observed barriers are explicitly considered. At the same time, new approaches to considering barriers like uncertainty or the (slow) spread of information are being developed in other disciplines. We conclude the paper by summarizing promising ways to improve representation of barriers in bottom-up models.
Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 164 citations 164 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:American Chemical Society (ACS) Funded by:DFGDFGNick Wierckx; Nick Wierckx; Tino Polen; Nadine Runge; Lars M. Blank; Maike Otto; Maike Otto; Sarah Preckel; Benedikt Wynands; Benedikt Wynands;pmid: 31465206
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Nathalie Sick; Nathalie Sick; Egbert Figgemeier; Egbert Figgemeier; Oliver Krätzig; Oliver Krätzig; Gebrekidan Gebresilassie Eshetu;Abstract For a successful transition from internal combustion engines to electric vehicles and from conventional power plants to renewable energy supply, battery technology plays a vital role. Accordingly, battery research and development (R&D) efforts have been increased considerably over the past decades, particularly regarding materials and cell chemistries to further improve the electrochemical performance of lithium ion batteries. The impetus behind such massive R&D has been the replacement of metallic lithium anodes, a notorious for potentially catastrophic shorting by lithium metal dendrites. However, despite the promise of a step improvement in energy density outperforming established LIB technology, the commercial introduction of cells with alternative anode materials in the mass market is slow. Against this backdrop, the aim of the present study is to provide an overview of current developments in the academic and industrial research arena, summarising the historical development of scientific literature and patent landscape beyond established anode materials. The study identifies and critically reviews tin, silicon, silicon oxide, aluminium and titanium-based anode materials as promising pathways to develop high-energy density next-generation LIBs.
Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGChristoph J. Brabec; Fei Guo; Fei Guo; Linxiang Zeng; Linxiang Zeng; Karen Forberich; Shi Chen; Yaohua Mai;doi: 10.1039/d0ee02575e
This review highlights the importance of controlling the crystallization dynamics for the deposition of high-quality photovoltaic perovskite layers on larger-area coatings.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024 GermanyPublisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Joshi, Vimarsh; Cepeda-Gomez, Rudy; Geyer, Thomas;doi: 10.2514/6.2024-3702
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2024-3702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2024-3702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Javad Ahmadi; Mohammadjavad Mahdavinejad; Olena Kalyanova Larsen; Chen Zhang; Somayeh Asadi;Studying the thermal performance of Double Skin Facades (DSFs) with vertical layers has dominated the literature,however, there is still a lack of in-depth research on the performance of DSFs with atypical geometries suchas folded cases which can be applied to Building Integrated Photovoltaic (BIPV) systems to improve their performance.To this end, the study evaluates the influence of the fold geometry on heat transfer, flow structure, andairflow rate in the Folded DSF cavities under a hot climate in Iran using an efficient method titled “patching”; themethod integrates Soltrace3 with a 2D steady-state CFD model by ANSYS-Fluent. The results show that the foldposition and its depth can alter the DSFs performance significantly; the higher the fold depth the more distortionof the flow field inside the cavity; from a practical perspective, the fold position in the upper part of the cavity issuitable for BIPVs application since it can capture 250% higher amount of solar radiation compared to a conventionalvertical-layer DSF as the Base Case; the net heat gain through outer layer could improve with increaseof fold depth and reach at least 33% higher than the Base Case, meanwhile, the total electricity generationpotential of folded cases could be up to 169% higher than the Base Case; thus, the study proved that if thearchitectural design is of interest, it is highly recommended to consider folded DSFs as a design option.
Aalborg University R... arrow_drop_down Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2023.102136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2023.102136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Pinnel, Nicole;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::f7b43e2d8a5f58736a7eb9eb415e3463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::f7b43e2d8a5f58736a7eb9eb415e3463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV M. Klauck; G. Nobrega; E.-A. Reinecke; A. Bentaib; L. Maas; N. Chaumeix; H.-J. Allelein;Juelich Shared Elect... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2022.104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2022.104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV E.-A. Reinecke; K. Takenaka; H. Ono; T. Kita; M. Taniguchi; Y. Nishihata; R. Hino; H. Tanaka;Abstract The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present, research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers, as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity. In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context, a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification, and is characterized by having a self-healing function of precious metals (Pd, Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
Juelich Shared Elect... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.08.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.08.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Fleiter, T.; Worrell, E.; Eichhammer, W.;The goal of this paper is to review bottom-up models for industrial energy demand with a particular focus on their capability to model barriers to the adoption of energy-efficient technologies. The integration of barriers into the models is an important prerequisite for a more detailed and realistic modeling of policies for energy efficiency. Particularly with the emergence of more and more varying policy instruments, it also becomes crucial for the models to take account of these policies as well as the barriers they address in a more realistic way. Our review revealed that, despite the broadly evident existence of market failures and barriers for energy-efficient technologies, they are only partly and in a rather aggregated form considered in today's bottom-up models. The state-of-the-art bottom-up model is based on an explicit representation of the technology stock and considers the costs of energy efficiency options in detail. But with regard to barriers, most models only make use of an aggregated approach, like an adjusted discount rate. While some models do not even consider technology costs and energy prices, but instead use exogenous technology diffusion rates, other more advanced models took first steps towards considering barriers in more detail. The latter allows differentiation between multiple parameters that influence technology adoption. Still, even in the most advanced models, only a few of the observed barriers are explicitly considered. At the same time, new approaches to considering barriers like uncertainty or the (slow) spread of information are being developed in other disciplines. We conclude the paper by summarizing promising ways to improve representation of barriers in bottom-up models.
Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 164 citations 164 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:American Chemical Society (ACS) Funded by:DFGDFGNick Wierckx; Nick Wierckx; Tino Polen; Nadine Runge; Lars M. Blank; Maike Otto; Maike Otto; Sarah Preckel; Benedikt Wynands; Benedikt Wynands;pmid: 31465206
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssynbio.9b00108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Nathalie Sick; Nathalie Sick; Egbert Figgemeier; Egbert Figgemeier; Oliver Krätzig; Oliver Krätzig; Gebrekidan Gebresilassie Eshetu;Abstract For a successful transition from internal combustion engines to electric vehicles and from conventional power plants to renewable energy supply, battery technology plays a vital role. Accordingly, battery research and development (R&D) efforts have been increased considerably over the past decades, particularly regarding materials and cell chemistries to further improve the electrochemical performance of lithium ion batteries. The impetus behind such massive R&D has been the replacement of metallic lithium anodes, a notorious for potentially catastrophic shorting by lithium metal dendrites. However, despite the promise of a step improvement in energy density outperforming established LIB technology, the commercial introduction of cells with alternative anode materials in the mass market is slow. Against this backdrop, the aim of the present study is to provide an overview of current developments in the academic and industrial research arena, summarising the historical development of scientific literature and patent landscape beyond established anode materials. The study identifies and critically reviews tin, silicon, silicon oxide, aluminium and titanium-based anode materials as promising pathways to develop high-energy density next-generation LIBs.
Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Journal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.103231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGChristoph J. Brabec; Fei Guo; Fei Guo; Linxiang Zeng; Linxiang Zeng; Karen Forberich; Shi Chen; Yaohua Mai;doi: 10.1039/d0ee02575e
This review highlights the importance of controlling the crystallization dynamics for the deposition of high-quality photovoltaic perovskite layers on larger-area coatings.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02575e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024 GermanyPublisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Joshi, Vimarsh; Cepeda-Gomez, Rudy; Geyer, Thomas;doi: 10.2514/6.2024-3702
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2024-3702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2024-3702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Javad Ahmadi; Mohammadjavad Mahdavinejad; Olena Kalyanova Larsen; Chen Zhang; Somayeh Asadi;Studying the thermal performance of Double Skin Facades (DSFs) with vertical layers has dominated the literature,however, there is still a lack of in-depth research on the performance of DSFs with atypical geometries suchas folded cases which can be applied to Building Integrated Photovoltaic (BIPV) systems to improve their performance.To this end, the study evaluates the influence of the fold geometry on heat transfer, flow structure, andairflow rate in the Folded DSF cavities under a hot climate in Iran using an efficient method titled “patching”; themethod integrates Soltrace3 with a 2D steady-state CFD model by ANSYS-Fluent. The results show that the foldposition and its depth can alter the DSFs performance significantly; the higher the fold depth the more distortionof the flow field inside the cavity; from a practical perspective, the fold position in the upper part of the cavity issuitable for BIPVs application since it can capture 250% higher amount of solar radiation compared to a conventionalvertical-layer DSF as the Base Case; the net heat gain through outer layer could improve with increaseof fold depth and reach at least 33% higher than the Base Case, meanwhile, the total electricity generationpotential of folded cases could be up to 169% higher than the Base Case; thus, the study proved that if thearchitectural design is of interest, it is highly recommended to consider folded DSFs as a design option.
Aalborg University R... arrow_drop_down Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2023.102136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2023.102136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Pinnel, Nicole;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::f7b43e2d8a5f58736a7eb9eb415e3463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::f7b43e2d8a5f58736a7eb9eb415e3463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV M. Klauck; G. Nobrega; E.-A. Reinecke; A. Bentaib; L. Maas; N. Chaumeix; H.-J. Allelein;Juelich Shared Elect... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2022.104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2022.104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV E.-A. Reinecke; K. Takenaka; H. Ono; T. Kita; M. Taniguchi; Y. Nishihata; R. Hino; H. Tanaka;Abstract The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present, research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers, as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity. In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context, a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification, and is characterized by having a self-healing function of precious metals (Pd, Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
Juelich Shared Elect... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.08.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.08.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu