- home
- Advanced Search
- Energy Research
- DE
- EU
- CH
- Fraunhofer Society
- Energy Research
- DE
- EU
- CH
- Fraunhofer Society
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Emrah Hastürk;Sebastian-Johannes Ernst;
Sebastian-Johannes Ernst
Sebastian-Johannes Ernst in OpenAIREChristoph Janiak;
Christoph Janiak
Christoph Janiak in OpenAIREAdsorption heat transformation (AHT) is an environmentally friendly energy-saving process applied for air conditioning purposes, that is, either for cooling (including also ice making and refrigeration), or heating. AHT is based on the cycling adsorption and desorption of a working fluid in a porous material. When the working fluid is driven to evaporation by the active empty sorbent material, the required heat of evaporation translates into useful cooling in thermally driven adsorption chillers. Driving heat regenerates the empty sorbent material through desorption of the working fluid. The heat of adsorption in the sorbent material and the heat of condensation of the working fluid can be used in the adsorption heat-pumping mode. Thus, adsorption heat transformation contributes to energy-saving technologies. Adsorbent development plays a critical role for the improvement of AHT technologies. Besides silica gel and zeolites as adsorbent materials, which are up to now used in the commercially available AHT devices; especially metal-organic frameworks (MOFs) are getting more attentions in recent years. Composite materials from salts with silica gels, zeolites and MOFs as well as activated carbons have also been researched to contribute to AHT technologies. Reduction of installation/production cost and enhancement of the efficiency of AHT devices need to be achieved to increase the wider usage of AHT.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coche.2018.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coche.2018.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Emrah Hastürk;Sebastian-Johannes Ernst;
Sebastian-Johannes Ernst
Sebastian-Johannes Ernst in OpenAIREChristoph Janiak;
Christoph Janiak
Christoph Janiak in OpenAIREAdsorption heat transformation (AHT) is an environmentally friendly energy-saving process applied for air conditioning purposes, that is, either for cooling (including also ice making and refrigeration), or heating. AHT is based on the cycling adsorption and desorption of a working fluid in a porous material. When the working fluid is driven to evaporation by the active empty sorbent material, the required heat of evaporation translates into useful cooling in thermally driven adsorption chillers. Driving heat regenerates the empty sorbent material through desorption of the working fluid. The heat of adsorption in the sorbent material and the heat of condensation of the working fluid can be used in the adsorption heat-pumping mode. Thus, adsorption heat transformation contributes to energy-saving technologies. Adsorbent development plays a critical role for the improvement of AHT technologies. Besides silica gel and zeolites as adsorbent materials, which are up to now used in the commercially available AHT devices; especially metal-organic frameworks (MOFs) are getting more attentions in recent years. Composite materials from salts with silica gels, zeolites and MOFs as well as activated carbons have also been researched to contribute to AHT technologies. Reduction of installation/production cost and enhancement of the efficiency of AHT devices need to be achieved to increase the wider usage of AHT.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coche.2018.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coche.2018.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Johannes Greulich;
Johannes Greulich
Johannes Greulich in OpenAIRESebastian Mack;
Sebastian Mack
Sebastian Mack in OpenAIRENico Wöhrle;
Nico Wöhrle
Nico Wöhrle in OpenAIRESabrina Werner;
+1 AuthorsSabrina Werner
Sabrina Werner in OpenAIREJohannes Greulich;
Johannes Greulich
Johannes Greulich in OpenAIRESebastian Mack;
Sebastian Mack
Sebastian Mack in OpenAIRENico Wöhrle;
Nico Wöhrle
Nico Wöhrle in OpenAIRESabrina Werner;
Elmar Lohmüller;Sabrina Werner
Sabrina Werner in OpenAIREAbstract With this work, we introduce numeric three-dimensional simulation of metal spiking into highly boron-doped surfaces of n-type silicon solar cells, which is moreover performed with a simulation of the quasi-steady-state photoconductance technique. This setup serves as a virtual experiment to simulate the dark saturation current density j 0,met of metallized boron-doped emitters with respect to metal spikes originating from the silver–aluminum (Ag–Al) contact. With the results obtained from this simulation model we approach quality and quantity of increased j 0,met and give detailed insight to which degree a solar cell’s performance is possibly harmed by this effect. We show that metal spikes penetrating into boron-doped emitters are of harmless nature concerning j 0,met until their tips reach depths where boron doping concentration is lower than approximately 10 18 cm −3 . Deeper spikes then lead to an exponential increase in j 0,met as more and more carriers from emitter and also the base are able to diffuse to its tip and recombine there. With the help of j 0 -results obtained experimentally in combination with the simulation results, we discuss the influence of spikes on emitter recombination, the benefits that can be achieved with deeper emitter doping profiles, and suggestions for the further development of pastes to contact boron-doped surfaces.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Johannes Greulich;
Johannes Greulich
Johannes Greulich in OpenAIRESebastian Mack;
Sebastian Mack
Sebastian Mack in OpenAIRENico Wöhrle;
Nico Wöhrle
Nico Wöhrle in OpenAIRESabrina Werner;
+1 AuthorsSabrina Werner
Sabrina Werner in OpenAIREJohannes Greulich;
Johannes Greulich
Johannes Greulich in OpenAIRESebastian Mack;
Sebastian Mack
Sebastian Mack in OpenAIRENico Wöhrle;
Nico Wöhrle
Nico Wöhrle in OpenAIRESabrina Werner;
Elmar Lohmüller;Sabrina Werner
Sabrina Werner in OpenAIREAbstract With this work, we introduce numeric three-dimensional simulation of metal spiking into highly boron-doped surfaces of n-type silicon solar cells, which is moreover performed with a simulation of the quasi-steady-state photoconductance technique. This setup serves as a virtual experiment to simulate the dark saturation current density j 0,met of metallized boron-doped emitters with respect to metal spikes originating from the silver–aluminum (Ag–Al) contact. With the results obtained from this simulation model we approach quality and quantity of increased j 0,met and give detailed insight to which degree a solar cell’s performance is possibly harmed by this effect. We show that metal spikes penetrating into boron-doped emitters are of harmless nature concerning j 0,met until their tips reach depths where boron doping concentration is lower than approximately 10 18 cm −3 . Deeper spikes then lead to an exponential increase in j 0,met as more and more carriers from emitter and also the base are able to diffuse to its tip and recombine there. With the help of j 0 -results obtained experimentally in combination with the simulation results, we discuss the influence of spikes on emitter recombination, the benefits that can be achieved with deeper emitter doping profiles, and suggestions for the further development of pastes to contact boron-doped surfaces.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Authors:André Tschöpe;
Matthias Franzreb; Michael Schneider;André Tschöpe
André Tschöpe in OpenAIREKarl Mandel;
+2 AuthorsKarl Mandel
Karl Mandel in OpenAIREAndré Tschöpe;
Matthias Franzreb; Michael Schneider;André Tschöpe
André Tschöpe in OpenAIREKarl Mandel;
Karl Mandel; Stefan Heikenwälder;Karl Mandel
Karl Mandel in OpenAIREAbstract Fluidized-bed electrodes could offer an interesting way to increase the electrode surface area applicable in electrochemical processes when the problem of poor electrical contact within the particle bed could be overcome. We recently demonstrated, that the contacting can be improved by the use of magnetizable electrode particles and the superposition of a magnetic field. However, details of the magnetic influence on the charge transport are still mostly unknown. In this work, we investigate the electrodynamics of a fluidized bed electrode with and without the superposition of a magnetic field by means of chronoamperometry and electrochemical impedance spectroscopy (EIS). In the chronoamperometric studies two types of charge transfer mechanism can be distinguished by the slope of the resistance increase with increasing distance between the electrodes. In close proximity to the electrodes direct conductive charge transfer along statistically formed particle chains dominates. Because the probability of uninterrupted particle chains quickly diminishes with increasing length, above a certain distance of approx. 6 mm a second, so-called convective, charge transfer mechanism dominates. This mechanism is based on the transfer of electrons between colliding fluidized particles and corresponds with a substantially higher specific resistance. The conductive charge transfer mechanism can be enhanced by up to a factor of four applying a superimposed magnetic field, while the second mechanism shows only a weak field dependence. The presented equivalent circuit model and the magnetic field dependency of its parameters contribute to a deeper understanding of the novel magnetically stabilized fluidized bed electrode and demonstrate the usefulness of EIS measurements for the prediction of the effectiveness of a particle based electrochemical reactor.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.125326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.125326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Authors:André Tschöpe;
Matthias Franzreb; Michael Schneider;André Tschöpe
André Tschöpe in OpenAIREKarl Mandel;
+2 AuthorsKarl Mandel
Karl Mandel in OpenAIREAndré Tschöpe;
Matthias Franzreb; Michael Schneider;André Tschöpe
André Tschöpe in OpenAIREKarl Mandel;
Karl Mandel; Stefan Heikenwälder;Karl Mandel
Karl Mandel in OpenAIREAbstract Fluidized-bed electrodes could offer an interesting way to increase the electrode surface area applicable in electrochemical processes when the problem of poor electrical contact within the particle bed could be overcome. We recently demonstrated, that the contacting can be improved by the use of magnetizable electrode particles and the superposition of a magnetic field. However, details of the magnetic influence on the charge transport are still mostly unknown. In this work, we investigate the electrodynamics of a fluidized bed electrode with and without the superposition of a magnetic field by means of chronoamperometry and electrochemical impedance spectroscopy (EIS). In the chronoamperometric studies two types of charge transfer mechanism can be distinguished by the slope of the resistance increase with increasing distance between the electrodes. In close proximity to the electrodes direct conductive charge transfer along statistically formed particle chains dominates. Because the probability of uninterrupted particle chains quickly diminishes with increasing length, above a certain distance of approx. 6 mm a second, so-called convective, charge transfer mechanism dominates. This mechanism is based on the transfer of electrons between colliding fluidized particles and corresponds with a substantially higher specific resistance. The conductive charge transfer mechanism can be enhanced by up to a factor of four applying a superimposed magnetic field, while the second mechanism shows only a weak field dependence. The presented equivalent circuit model and the magnetic field dependency of its parameters contribute to a deeper understanding of the novel magnetically stabilized fluidized bed electrode and demonstrate the usefulness of EIS measurements for the prediction of the effectiveness of a particle based electrochemical reactor.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.125326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.125326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors:Hans-Martin Henning;
M. Schicktanz; P.P.C. Hügenell; H. Sievers; +1 AuthorsHans-Martin Henning
Hans-Martin Henning in OpenAIREHans-Martin Henning;
M. Schicktanz; P.P.C. Hügenell; H. Sievers;Hans-Martin Henning
Hans-Martin Henning in OpenAIREStefan K. Henninger;
Stefan K. Henninger
Stefan K. Henninger in OpenAIREAbstract In this first part a comprehensive thermophysical characterisation of six activated carbons – based on coconut, peat and stone coal with focus on thermally driven chillers is reported. Pore and surface analysis are performed using N2 and CO2 adsorption. Furthermore the density and heat capacity of the samples is determined. Methanol adsorption measurements for evaporation between −5 °C and 35 °C and driving temperatures up to 130 °C are realized using a thermobalance and evaluated using the Dubinin–Astakhov (DA) approach. Based on the given DA equations, the possible loading lifts for typical applications like 95°-35°-7 °C are calculated. The samples show very attractive maximum loading lifts up to 0.385 g g−1. Furthermore the mass and volume specific cooling enthalpy of 244 kJ kg−1 and 126 kJ dm−3 under realistic conditions demonstrates the good performance of this working pair.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2011.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2011.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors:Hans-Martin Henning;
M. Schicktanz; P.P.C. Hügenell; H. Sievers; +1 AuthorsHans-Martin Henning
Hans-Martin Henning in OpenAIREHans-Martin Henning;
M. Schicktanz; P.P.C. Hügenell; H. Sievers;Hans-Martin Henning
Hans-Martin Henning in OpenAIREStefan K. Henninger;
Stefan K. Henninger
Stefan K. Henninger in OpenAIREAbstract In this first part a comprehensive thermophysical characterisation of six activated carbons – based on coconut, peat and stone coal with focus on thermally driven chillers is reported. Pore and surface analysis are performed using N2 and CO2 adsorption. Furthermore the density and heat capacity of the samples is determined. Methanol adsorption measurements for evaporation between −5 °C and 35 °C and driving temperatures up to 130 °C are realized using a thermobalance and evaluated using the Dubinin–Astakhov (DA) approach. Based on the given DA equations, the possible loading lifts for typical applications like 95°-35°-7 °C are calculated. The samples show very attractive maximum loading lifts up to 0.385 g g−1. Furthermore the mass and volume specific cooling enthalpy of 244 kJ kg−1 and 126 kJ dm−3 under realistic conditions demonstrates the good performance of this working pair.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2011.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2011.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Inga Boie;
Christoph Kost; Sven Bohn; Michael Agsten; +6 AuthorsInga Boie
Inga Boie in OpenAIREInga Boie;
Christoph Kost; Sven Bohn; Michael Agsten; Peter Bretschneider;Inga Boie
Inga Boie in OpenAIREOleksandr Snigovyi;
Martin Pudlik;Oleksandr Snigovyi
Oleksandr Snigovyi in OpenAIREMario Ragwitz;
Thomas Schlegl;Mario Ragwitz
Mario Ragwitz in OpenAIREDirk Westermann;
Dirk Westermann
Dirk Westermann in OpenAIREClimate change and limited availability of fossil fuel reserves stress both the importance of deploying renewable energy sources (RES) for electricity generation and the need for a stronger integration of regional electricity markets. This analysis focuses on North African (NA) countries, which possess vast resources of renewable energy but whose electricity supply is still largely dependent on fossil fuels. An analysis of cost-optimized deployment scenarios for RES is conducted in five NA countries in 2030 and 2050. Three electricity models are combined to derive results covering trans-regional to sub-national level, including a detailed analysis of grid capacities and future transmission challenges. Further, opportunities for integration of European and NA electricity markets are evaluated. Results confirm that, by 2050, high RES shares – close to 100% – are possible in NA. Wind energy is the dominant technology. Concentrated Solar Power (CSP) plants also play an important role with rising RES shares due to the possibility to store thermal energy. Electricity exports to Europe gain particular importance in the period after 2030. Substantial transmission grid reinforcements on AC-level and the construction of a high voltage DC overlay grid are prerequisites for the forecasted scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Inga Boie;
Christoph Kost; Sven Bohn; Michael Agsten; +6 AuthorsInga Boie
Inga Boie in OpenAIREInga Boie;
Christoph Kost; Sven Bohn; Michael Agsten; Peter Bretschneider;Inga Boie
Inga Boie in OpenAIREOleksandr Snigovyi;
Martin Pudlik;Oleksandr Snigovyi
Oleksandr Snigovyi in OpenAIREMario Ragwitz;
Thomas Schlegl;Mario Ragwitz
Mario Ragwitz in OpenAIREDirk Westermann;
Dirk Westermann
Dirk Westermann in OpenAIREClimate change and limited availability of fossil fuel reserves stress both the importance of deploying renewable energy sources (RES) for electricity generation and the need for a stronger integration of regional electricity markets. This analysis focuses on North African (NA) countries, which possess vast resources of renewable energy but whose electricity supply is still largely dependent on fossil fuels. An analysis of cost-optimized deployment scenarios for RES is conducted in five NA countries in 2030 and 2050. Three electricity models are combined to derive results covering trans-regional to sub-national level, including a detailed analysis of grid capacities and future transmission challenges. Further, opportunities for integration of European and NA electricity markets are evaluated. Results confirm that, by 2050, high RES shares – close to 100% – are possible in NA. Wind energy is the dominant technology. Concentrated Solar Power (CSP) plants also play an important role with rising RES shares due to the possibility to store thermal energy. Electricity exports to Europe gain particular importance in the period after 2030. Substantial transmission grid reinforcements on AC-level and the construction of a high voltage DC overlay grid are prerequisites for the forecasted scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Elsevier BV Authors: Maurer, C.; Cappel, C.; Kuhn, T.E.;AbstractWithin the Aktifas project, a road map is being developed for research and development of façade-integrated solar thermal systems. The road map is based on an analysis of the barriers for façade-integrated solar thermal systems as well as a market overview of existing components. This paper presents the methodology for creating the road map as well as first results. The final road map will be published on http://bit.ly/Z0hkso at the beginning of 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 GermanyPublisher:Elsevier BV Authors: Maurer, C.; Cappel, C.; Kuhn, T.E.;AbstractWithin the Aktifas project, a road map is being developed for research and development of façade-integrated solar thermal systems. The road map is based on an analysis of the barriers for façade-integrated solar thermal systems as well as a market overview of existing components. This paper presents the methodology for creating the road map as well as first results. The final road map will be published on http://bit.ly/Z0hkso at the beginning of 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Royal Society of Chemistry (RSC) Authors:Tobias Robert;
Tobias Robert
Tobias Robert in OpenAIREStefan Friebel;
Stefan Friebel
Stefan Friebel in OpenAIREItaconic acid has attracted considerable attention as a bio-based building block in radical polymerizations. However, only a few studies have been dedicated to polyesters derived from this interesting α,β-unsaturated dicarbonic acid. This review aims to highlight the most important work in this field and show the unique properties of these renewable unsaturated polyesters.
Green Chemistry arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6gc00605a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 231 citations 231 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Chemistry arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6gc00605a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Royal Society of Chemistry (RSC) Authors:Tobias Robert;
Tobias Robert
Tobias Robert in OpenAIREStefan Friebel;
Stefan Friebel
Stefan Friebel in OpenAIREItaconic acid has attracted considerable attention as a bio-based building block in radical polymerizations. However, only a few studies have been dedicated to polyesters derived from this interesting α,β-unsaturated dicarbonic acid. This review aims to highlight the most important work in this field and show the unique properties of these renewable unsaturated polyesters.
Green Chemistry arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6gc00605a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 231 citations 231 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Chemistry arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6gc00605a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Elsevier BV Authors: Hans Erhorn; Heike Erhorn-Kluttig; Johann Reiß;AbstractIn 2008 the German Ministry of Economic Affairs and Energy launched an initiative for new or retrofitted energy-efficient school buildings as focus area within their research programme “EnOB” (Energy Optimised Buildings). The initiative (www.eneff-schule.de) comprises three different energy levels:•Best practice schools with energy-efficient renovations above the requirements in the energy-saving ordinance•Three-liter-house schools with energy needs for heating, hot water and auxiliary below 34 kWh/m2year•Plus energy schools that produce more energy than they use in the annual balanceCurrently three different plus energy school buildings have been planned, realized and monitored within the initiative, two of them being renovations (Stuttgart and Rostock), the last one being a new school building (Hohen Neuendorf). The three energy concepts include rather different technologies to generate heat and to reduce the energy consumption of ventilation and lighting systems. This is partly due to the research initiative approach of “EnEff:Schule” that asks for testing innovative technologies. There is however a general tendency to:•Low U-values of the building envelope with about 0.11–0.15W/m2K at the walls and roof, 0.10W/m2K for new base plates and 0.20–0.34W/m2K for renovated ground slabs and basement ceilings and 0.80W/m2K for windows•Large PV areas to compensate for the remaining energy use, sometimes in combination with other technologies or systems that generate electricity•Mechanical ventilation systems with high heat recovery rates but in combination with natural ventilation•User-dependent control strategies for ventilation and heating•Use of daylight at both the window/solar shading side and the electrical lighting controlThe paper compares the different technologies used at the building envelope, the heating, ventilation and lighting systems, the calculated and measured energy consumptions and the building costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Elsevier BV Authors: Hans Erhorn; Heike Erhorn-Kluttig; Johann Reiß;AbstractIn 2008 the German Ministry of Economic Affairs and Energy launched an initiative for new or retrofitted energy-efficient school buildings as focus area within their research programme “EnOB” (Energy Optimised Buildings). The initiative (www.eneff-schule.de) comprises three different energy levels:•Best practice schools with energy-efficient renovations above the requirements in the energy-saving ordinance•Three-liter-house schools with energy needs for heating, hot water and auxiliary below 34 kWh/m2year•Plus energy schools that produce more energy than they use in the annual balanceCurrently three different plus energy school buildings have been planned, realized and monitored within the initiative, two of them being renovations (Stuttgart and Rostock), the last one being a new school building (Hohen Neuendorf). The three energy concepts include rather different technologies to generate heat and to reduce the energy consumption of ventilation and lighting systems. This is partly due to the research initiative approach of “EnEff:Schule” that asks for testing innovative technologies. There is however a general tendency to:•Low U-values of the building envelope with about 0.11–0.15W/m2K at the walls and roof, 0.10W/m2K for new base plates and 0.20–0.34W/m2K for renovated ground slabs and basement ceilings and 0.80W/m2K for windows•Large PV areas to compensate for the remaining energy use, sometimes in combination with other technologies or systems that generate electricity•Mechanical ventilation systems with high heat recovery rates but in combination with natural ventilation•User-dependent control strategies for ventilation and heating•Use of daylight at both the window/solar shading side and the electrical lighting controlThe paper compares the different technologies used at the building envelope, the heating, ventilation and lighting systems, the calculated and measured energy consumptions and the building costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Report , Preprint 2010 GermanyPublisher:Fraunhofer-Gesellschaft Authors: Rogge, Karoline S.; Linden, Christian;In this paper, we conduct a cross-country quantitative analysis of the replacement incentives generated by the EU ETS for the power sector in 2008-12. In order to do so, the allocation rules of the Member States are applied to concrete reference power plants for three different fuel types (lignite, hard coal and gas). Based on these calculations, we compare installation-specific replacement in-centives across the Member States. Our analysis shows that replacement incentives vary significantly across Member States and typically deviate from the incentives provided in the reference case of full auctioning. Furthermore, the EU ETS allocation rules lead to perverse incentives in approximately 30% of the possible replacement options. Only 5 MS do not provide any perverse incentives. Finally, we explore the link between replacement incentives and allocation types. Based on our findings, we derive policy recommendations for the design of emission trading schemes emerging around the world.
Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-fhg-294804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-fhg-294804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Research , Report , Preprint 2010 GermanyPublisher:Fraunhofer-Gesellschaft Authors: Rogge, Karoline S.; Linden, Christian;In this paper, we conduct a cross-country quantitative analysis of the replacement incentives generated by the EU ETS for the power sector in 2008-12. In order to do so, the allocation rules of the Member States are applied to concrete reference power plants for three different fuel types (lignite, hard coal and gas). Based on these calculations, we compare installation-specific replacement in-centives across the Member States. Our analysis shows that replacement incentives vary significantly across Member States and typically deviate from the incentives provided in the reference case of full auctioning. Furthermore, the EU ETS allocation rules lead to perverse incentives in approximately 30% of the possible replacement options. Only 5 MS do not provide any perverse incentives. Finally, we explore the link between replacement incentives and allocation types. Based on our findings, we derive policy recommendations for the design of emission trading schemes emerging around the world.
Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-fhg-294804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fraunhofer-ePrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24406/publica-fhg-294804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012 GermanyPublisher:Walter de Gruyter GmbH Authors:Sprafke, A. N.;
Sprafke, A. N.
Sprafke, A. N. in OpenAIREWehrspohn, R. B.;
Wehrspohn, R. B.
Wehrspohn, R. B. in OpenAIREAbstractPhoton management is a key component in the development of efficient solar cells. Especially light-trapping concepts have a high potential to realize enhanced efficiencies. Here, we give an overview over several light trapping concepts for photon management in solar cells. These include basic as well as advanced light-trapping concepts. The theoretical limits of light path enhancement of the different concepts are given and experimental work on these topics is presented. The potential of 3D photonic crystals is discussed in the context of the corresponding approaches as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2012-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2012-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012 GermanyPublisher:Walter de Gruyter GmbH Authors:Sprafke, A. N.;
Sprafke, A. N.
Sprafke, A. N. in OpenAIREWehrspohn, R. B.;
Wehrspohn, R. B.
Wehrspohn, R. B. in OpenAIREAbstractPhoton management is a key component in the development of efficient solar cells. Especially light-trapping concepts have a high potential to realize enhanced efficiencies. Here, we give an overview over several light trapping concepts for photon management in solar cells. These include basic as well as advanced light-trapping concepts. The theoretical limits of light path enhancement of the different concepts are given and experimental work on these topics is presented. The potential of 3D photonic crystals is discussed in the context of the corresponding approaches as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2012-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/green-2012-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu