- home
- Advanced Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- DE
- EU
- Energy Research
- 2021-2025
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- DE
- EU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Turkey, Denmark, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPDominic Matte; Dominic Matte; Tugba Ozturk; Tugba Ozturk; Tugba Ozturk; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen;handle: 11729/3315 , 11250/3137661
AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.
Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Turkey, Denmark, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPDominic Matte; Dominic Matte; Tugba Ozturk; Tugba Ozturk; Tugba Ozturk; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen;handle: 11729/3315 , 11250/3137661
AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.
Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, GermanyPublisher:Springer Science and Business Media LLC Authors: Francisco Pérez-Invernón; Francisco J. Gordillo-Vázquez; Heidi Huntrieser; Patrick Jöckel;AbstractLightning is the main precursor of natural wildfires and Long-Continuing-Current (LCC) lightning flashes are proposed to be the main igniters of lightning-ignited wildfires (LIW). Previous studies predict a change of the global occurrence rate and spatial pattern of total lightning. Nevertheless, the sensitivity of lightning-ignited wildfire occurrence to climate change is uncertain. Here, we investigate space-based measurements of LCC lightning associated with lightning ignitions and present LCC lightning projections under the Representative Concentration Pathway RCP6.0 for the 2090s by applying a recent LCC lightning parameterization based on the updraft strength in thunderstorms. We find a 41% global increase of the LCC lightning flash rate. Increases are largest in South America, the western coast of North America, Central America, Australia, Southern and Eastern Asia, and Europe, while only regional variations are found in northern polar forests, where fire risk can affect permafrost soil carbon release. These results show that lightning schemes including LCC lightning are needed to project the occurrence of lightning-ignited wildfires under climate change.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, GermanyPublisher:Springer Science and Business Media LLC Authors: Francisco Pérez-Invernón; Francisco J. Gordillo-Vázquez; Heidi Huntrieser; Patrick Jöckel;AbstractLightning is the main precursor of natural wildfires and Long-Continuing-Current (LCC) lightning flashes are proposed to be the main igniters of lightning-ignited wildfires (LIW). Previous studies predict a change of the global occurrence rate and spatial pattern of total lightning. Nevertheless, the sensitivity of lightning-ignited wildfire occurrence to climate change is uncertain. Here, we investigate space-based measurements of LCC lightning associated with lightning ignitions and present LCC lightning projections under the Representative Concentration Pathway RCP6.0 for the 2090s by applying a recent LCC lightning parameterization based on the updraft strength in thunderstorms. We find a 41% global increase of the LCC lightning flash rate. Increases are largest in South America, the western coast of North America, Central America, Australia, Southern and Eastern Asia, and Europe, while only regional variations are found in northern polar forests, where fire risk can affect permafrost soil carbon release. These results show that lightning schemes including LCC lightning are needed to project the occurrence of lightning-ignited wildfires under climate change.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Funded by:EC | OPTAINEC| OPTAINHorel, Agota; Zsigmond, Tibor; Molnár, Sándor; Zagyva, Imre; Bakacsi, Zsófia;Abstract Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Funded by:EC | OPTAINEC| OPTAINHorel, Agota; Zsigmond, Tibor; Molnár, Sándor; Zagyva, Imre; Bakacsi, Zsófia;Abstract Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Turkey, Denmark, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPDominic Matte; Dominic Matte; Tugba Ozturk; Tugba Ozturk; Tugba Ozturk; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen;handle: 11729/3315 , 11250/3137661
AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.
Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Turkey, Denmark, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | EUCPEC| EUCPDominic Matte; Dominic Matte; Tugba Ozturk; Tugba Ozturk; Tugba Ozturk; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen;handle: 11729/3315 , 11250/3137661
AbstractEuropean climate is associated with variability and changes in the mid-latitude atmospheric circulation. In this study, we aim to investigate potential future change in circulation over Europe by using the EURO-CORDEX regional climate projections at 0.11° grid mesh. In particular, we analyze future change in 500-hPa geopotential height (Gph), 500-hPa wind speed and mean sea level pressure (MSLP) addressing different warming levels of 1 °C, 2 °C and 3 °C, respectively. Simple scaling with the global mean temperature change is applied to the regional climate projections for monthly mean 500-hPa Gph and 500-hPa wind speed. Results from the ensemble mean of individual models show a robust increase in 500-hPa Gph and MSLP in winter over Mediterranean and Central Europe, indicating an intensification of anticyclonic circulation. This circulation change emerges robustly in most simulations within the coming decade. There are also enhanced westerlies which transport warm and moist air to the Mediterranean and Central Europe in winter and spring. It is also clear that, models showing different responses to circulation depend very much on the global climate model ensemble member in which they are nested. For all seasons, particularly autumn, the ensemble mean is much more correlated with the end of the century than most of the individual models. In general, the emergence of a scaled pattern appears rather quickly.
Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/3137661Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/3315Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık ArşiviUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Işık University Institutional RepositoryArticle . 2021Data sources: Işık University Institutional RepositoryIşık Üniversitesi: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-06069-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jennifer Brucker; René Behmann; Wolfgang G. Bessler; Rainer Gasper;doi: 10.3390/en15072661
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2661/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Applied Sciences: OPUS-HSOArticle . 2022License: CC BYFull-Text: https://doi.org/10.3390/en15072661Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, GermanyPublisher:Springer Science and Business Media LLC Authors: Francisco Pérez-Invernón; Francisco J. Gordillo-Vázquez; Heidi Huntrieser; Patrick Jöckel;AbstractLightning is the main precursor of natural wildfires and Long-Continuing-Current (LCC) lightning flashes are proposed to be the main igniters of lightning-ignited wildfires (LIW). Previous studies predict a change of the global occurrence rate and spatial pattern of total lightning. Nevertheless, the sensitivity of lightning-ignited wildfire occurrence to climate change is uncertain. Here, we investigate space-based measurements of LCC lightning associated with lightning ignitions and present LCC lightning projections under the Representative Concentration Pathway RCP6.0 for the 2090s by applying a recent LCC lightning parameterization based on the updraft strength in thunderstorms. We find a 41% global increase of the LCC lightning flash rate. Increases are largest in South America, the western coast of North America, Central America, Australia, Southern and Eastern Asia, and Europe, while only regional variations are found in northern polar forests, where fire risk can affect permafrost soil carbon release. These results show that lightning schemes including LCC lightning are needed to project the occurrence of lightning-ignited wildfires under climate change.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, GermanyPublisher:Springer Science and Business Media LLC Authors: Francisco Pérez-Invernón; Francisco J. Gordillo-Vázquez; Heidi Huntrieser; Patrick Jöckel;AbstractLightning is the main precursor of natural wildfires and Long-Continuing-Current (LCC) lightning flashes are proposed to be the main igniters of lightning-ignited wildfires (LIW). Previous studies predict a change of the global occurrence rate and spatial pattern of total lightning. Nevertheless, the sensitivity of lightning-ignited wildfire occurrence to climate change is uncertain. Here, we investigate space-based measurements of LCC lightning associated with lightning ignitions and present LCC lightning projections under the Representative Concentration Pathway RCP6.0 for the 2090s by applying a recent LCC lightning parameterization based on the updraft strength in thunderstorms. We find a 41% global increase of the LCC lightning flash rate. Increases are largest in South America, the western coast of North America, Central America, Australia, Southern and Eastern Asia, and Europe, while only regional variations are found in northern polar forests, where fire risk can affect permafrost soil carbon release. These results show that lightning schemes including LCC lightning are needed to project the occurrence of lightning-ignited wildfires under climate change.
Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-36500-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | EASY-RESEC| EASY-RESStocker, Armin; Alshawish, Ali; Bor, Martin; Vidler, John; Gouglidis, Antonios; Scott, Andrew; Marnerides, Angelos; De Meer, Hermann; Hutchison, David;AbstractSmart Grids are electrical grids that require a decentralised way of controlling electric power conditioning and thereby control the production and distribution of energy. Yet, the integration of Distributed Renewable Energy Sources (DRESs) in the Smart Grid introduces new challenges with regards to electrical grid balancing and storing of electrical energy, as well as additional monetary costs. Furthermore, the future smart grid also has to take over the provision of Ancillary Services (ASs). In this paper, a distributed ICT infrastructure to solve such challenges, specifically related to ASs in future Smart Grids, is described. The proposed infrastructure is developed on the basis of the Smart Grid Architecture Model (SGAM) framework, which is defined by the European Commission in Smart Grid Mandate M/490. A testbed that provides a flexible, secure, and low-cost version of this architecture, illustrating the separation of systems and responsibilities, and supporting both emulated DRESs and real hardware has been developed. The resulting system supports the integration of a variety of DRESs with a secure two-way communication channel between the monitoring and controlling components. It assists in the analysis of various inter-operabilities and in the verification of eventual system designs. To validate the system design, the mapping of the proposed architecture to the testbed is presented. Further work will help improve the architecture in two directions; first, by investigating specific-purpose use cases, instantiated using this more generic framework; and second, by investigating the effects a realistic number and variety of connected devices within different grid configurations has on the testbed infrastructure.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42162-022-00189-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Funded by:EC | OPTAINEC| OPTAINHorel, Agota; Zsigmond, Tibor; Molnár, Sándor; Zagyva, Imre; Bakacsi, Zsófia;Abstract Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Funded by:EC | OPTAINEC| OPTAINHorel, Agota; Zsigmond, Tibor; Molnár, Sándor; Zagyva, Imre; Bakacsi, Zsófia;Abstract Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Hydrology... arrow_drop_down Journal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Hydrology and HydromechanicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/johh-2022-0015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu