- home
- Advanced Search
- Energy Research
- DE
- FR
- AU
- FI
- Energy Research
- DE
- FR
- AU
- FI
description Publicationkeyboard_double_arrow_right Doctoral thesis 2015Authors: Lempereur, Morine;La croissance secondaire est à l'origine de l'accumulation de biomasse pérenne par les arbres et détermine en partie la capacité des écosystèmes forestiers à stocker du carbone. Cependant, les contraintes environnementales sur la croissance en milieu méditerranéen sont encore mal décrites et nous ne savons pas comment les changements climatiques futurs vont les modifier. L'objectif de la thèse est de déterminer, principalement à partir de l'étude de l'allocation du carbone à la croissance secondaire, les réponses fonctionnelles saisonnières et interannuelles du chêne vert (Quercus ilex L.) aux variations climatiques en région méditerranéenne. L'utilisation de différentes approches expérimentales, à des échelles spatiales allant du cerne à l'écosystème et à des échelles temporelles allant de la journée à plusieurs dizaines d'années, a permis de mettre en évidence l'effet de différentes contraintes environnementales (disponibilité en eau, réchauffement de la température, et densité du peuplement) sur la croissance secondaire et la composition isotopique du cerne. L'étude de la phénologie de la croissance montre que celle-ci est contrôlée directement par les températures hivernales et le déficit hydrique, plus que par la disponibilité en éléments carbonés issus de la photosynthèse. De 1968 à 2013, les changements climatiques ont entrainé une contrainte hydrique de plus en plus précoce qui s'est trouvée compensée par un début de croissance initié plus tôt dans l'année, sous l'effet du réchauffement des températures hivernales, et une meilleure efficacité d'utilisation de l'eau, sous l'effet de l'augmentation de la concentration en CO2 atmosphérique. La réduction de la mortalité et l'augmentation de la croissance observée dans des parcelles éclaircies montre que cette pratique sylvicole permet de préparer les taillis de chêne vert à l'intensification de la sècheresse prévue pour la région méditerranéenne. Tree secondary growth is responsible for woody biomass accumulation and is a major component of carbon storage in forest ecosystems. Environmental constraints on secondary growth in Mediterranean ecosystems must, however, be described in more to details to better understand how they will be modified by climate change. This dissertation aims at studying the functional responses of Mediterranean holm oak (Quercus ilex) to seasonal and inter-annual climate variations through the study of carbon allocation to secondary growth. Different experimental approaches, at spatial scales ranging from tree rings to the ecosystem and at temporal scales from the day to several decades, were used to identify the main environmental constraints (water availability, temperature warming, competition) to secondary growth and carbon isotopic composition of tree rings. The phenology of stem growth shows evidence for a direct environmental control on annual growth by winter temperature and summer drought that is more limiting than the carbon supply from photosynthesis. Climate change from 1968 to 2013 resulted in earlier water limitation on secondary growth, which was compensated by earlier growth onset, due to warmer winter temperature, and higher water use efficiency, due to increased atmospheric CO2 concentration. Thinning reduced tree mortality and increased stem growth, so thinning management in old holm oak coppices could prepare the ecosystem to better withstand the increasing drought forecasted for the Mediterranean region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Karlsruhe Publicly fundedFunded by:EC | RI Impact PathwaysEC| RI Impact PathwaysGiancarlo Ferrera; Giancarlo Ferrera; T. P. Watson; Oliver Fischer; Oliver Fischer; S. Fiorendi; C. Bhat; Olivier Leroy; M. K. Yanehsari; V. Arı; Simone Bologna; R. Aleksan; S. Myers; Leonid Rivkin; G. Catalano; S. V. Furuseth; Nathaniel Craig; M. Ramsey-Musolf; M. Merk; H. J. He; J. Proudfoot; X. Jiang; S. Kowalski; H. Chanal; Roderik Bruce; Radja Boughezal; S. Atieh; D. Liberati; E. Leogrande; Fady Bishara; Fady Bishara; O. Panella; O. Panella; Jiayin Gu; Lance D. Cooley; Alexander Ball; Paolo Castelnovo; A. Blondel; P. Sphicas; F. Dordei; Samuele Mariotto; Samuele Mariotto; I. Bellafont; A. Abada; Peter Braun-Munzinger; K. J. Eskola; J. M. Valet; Maria Paola Lombardo; Maria Paola Lombardo; Ph. Lebrun; S. P. Das; H. J. Yang; Luc Poggioli; Leonel Ferreira; Abhishek M. Iyer; A. Saba; Giovanni Volpini; Giovanni Volpini; Valeria Braccini; Federico Carra; S. J. De Jong; Daniela Bortoletto; Ayres Freitas; Jürgen Reuter; T. Sian; T. Sian; T. Sian; M. Nonis; G. Vorotnikov; V. Yermolchik; S. Jadach; T. Marriott-Dodington; M. Widorski; Jac Perez; Sinan Kuday; Gianluigi Arduini; J. Cervantes; H. Duran Yildiz; Victor P. Goncalves; Anke-Susanne Müller; G. Rolandi; M. Demarteau; Marumi Kado; Marumi Kado; Michael Syphers; Ryu Sawada; T. Podzorny; Sara Khatibi; Colin Bernet; Yuji Enari; M. Morrone; Y. Dydyshka; Alessandro Polini; Alessandro Polini; J. B. De Vivie De Regie; V. Raginel; M. Panareo; Patrick Draper; Y. Bai; V. Guzey; I. Tapan; D. Woog; A. Crivellin; Andrea Bastianin; M. Zobov; Caterina Vernieri; A. Carvalho; S. Rojas-Torres; N. Pukhaeva; O. Bolukbasi; Guilherme Milhano; M. Mohammadi Najafabadi; Andreas Salzburger; J. Gutierrez; D. K. Hong; A. Apyan; Peter Skands; S. Bertolucci; S. Bertolucci; Masaya Ishino; M. A. Pleier; T. Hoehn; C. Bernini; S. Baird; H. D. Yoo; S. Holleis; Adarsh Pyarelal; Clemens Lange; J. L. Biarrotte; C. Marquet; Wojciech Kotlarski; J. Barranco García; V. Smirnov; Ingo Ruehl; F. Couderc; O. Grimm; Ricardo Gonçalo; Enrico Scomparin; Enrico Scomparin; Giulia Sylva; Oreste Nicrosini; Oreste Nicrosini; Alessandro Tricoli; R. Contino; Hubert Kroha; Y. Zhang; Roberto Ferrari; Roberto Ferrari; Giuseppe Montenero; T. Srivastava; Luca Silvestrini; Marco Andreini; I. Aichinger; Brennan Goddard; C. Andris; P. N. Ratoff; G. Zick; Jorg Wenninger; Andrea Malagoli; M. Moreno Llácer; C. Han; Mauro Chiesa; Livio Fanò; Livio Fanò; S. M. Gascon-Shotkin; B. Strauss; W. Da Silva; Jana Faltova; Berndt Müller; Berndt Müller; M. Kordiaczyńska; André Schöning; Francesco Giffoni; M. Aburaia; Chiu-Chung Young; D. Chanal; Holger Podlech; G. Yang; M. Skrzypek; W. M. Yao; M. Podeur; M. I. Besana; Angelo Infantino; B. Riemann; German F. R. Sborlini; E. Bruna; E. Bruna; D. Saez de Jauregui; R. Patterson; Filippo Sala; Andrzej Siodmok; E. Palmieri; Marcello Abbrescia; Marcello Abbrescia; L. Deniau; David Olivier Jamin; V. Baglin; F. Cerutti; Shehu S. AbdusSalam; P. Costa Pinto;handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
European physical journal special topics 228(2), 261-623 (2019). doi:10.1140/epjst/e2019-900045-4 Published by Springer, Berlin ; Heidelberg
CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:BMJ Josef Veselka; Morten Jensen; Max Liebregts; Robert M Cooper; Jaroslav Januska; Maksim Kashtanov; Maciej Dabrowski; Peter Riis Hansen; Hubert Seggewiss; Eva Hansvenclova; Henning Bundgaard; Jurrien ten Berg; Rodney Hilton Stables; Lothar Faber;pmid: 31471463
Objective The current guidelines suggest alcohol septal ablation (ASA) is less effective in hypertrophic obstructive cardiomyopathy (HOCM) patients with severe left ventricular hypertrophy, despite acknowledging that systematic data are lacking. Therefore, we analysed patients in the Euro-ASA registry to test this statement. Methods We compared the short-term and long-term outcomes of patients with basal interventricular septum (IVS) thickness <30 mm Hg to those with ≥30 mm Hg treated using ASA in nine European centres. Results A total of 1519 patients (57±14 years, 49% women) with symptomatic HOCM were treated, including 67 (4.4%) patients with IVS thickness ≥30 mm. The occurrence of short-term major adverse events were similar in both groups. The mean follow-up was 5.4±4.3 years and 5.1±4.1 years, and the all-cause mortality rate was 2.57 and 2.94 deaths per 100 person-years of follow-up in the IVS <30 mm group and the IVS ≥30 mm group (p=0.047), respectively. There were no differences in dyspnoea (New York Heart Association class III/IV 12% vs 16%), residual left ventricular outflow tract gradient (16±20 vs 16±16 mm Hg) and repeated septal reduction procedures (12% vs 18%) in the IVS <30 mm group and IVS ≥30 mm group, respectively (p=NS for all). Conclusions The short-term results and the long-term relief of dyspnoea, residual left ventricular outflow obstruction and occurrence of repeated septal reduction procedures in patients with basal IVS ≥30 mm is similar to those with IVS <30mm. However, long-term all-cause and cardiac mortality rates are worse in the ≥30 mm group.
PURE Aarhus Universi... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Beilstein Institut Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J.;Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Beilstein Journal of NanotechnologyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen Published in a Diamond OA journal 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Beilstein Journal of NanotechnologyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Filipe Joel Soares; António Coelho; José Iria; Fernando Cassola; Aydogan Ozdemir; Nuno Fonseca; António Barbosa;Abstract Office buildings consume a significant amount of energy that can be reduced through behavioral change. Gamification offers the means to influence the energy consumption related to the activities of the office users. This paper presents a new mobile gamification platform to foster the adoption of energy efficient behaviors in office buildings. The gamification platform is a mobile application with multiple types of dashboards, such as (1) an information dashboard to increase the awareness of the users about their energy consumption and footprint, (2) a gaming dashboard to engage users in real-time energy efficiency competitions, (3) a leaderboard to promote peer competition and comparison, and (4) a message dashboard to send tailor-made messages about energy efficiency opportunities. The engagement and gamification strategies embedded in these dashboards exploit economic, environmental, and social motivations to stimulate office users to adopt energy efficient behaviors without compromising their comfort and autonomy levels. The gamification platform was demonstrated in an office building environment. The results suggest electricity savings of 20%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Fu, Xiaotong; Yan, Shuai; Chen, Zhifu; Xu, Xiaoyu; Ren, Zhuoxiang;doi: 10.3390/en17102326
Accurately calculating the losses of ferromagnetic materials is crucial for optimizing the design and ensuring the safe operation of electrical equipment such as motors and power transformers. Commonly used loss calculation models include the Bertotti empirical formula and hysteresis models. In this paper, a new hybrid hysteresis model method is proposed to calculate losses—namely, the combination of the Jiles–Atherton hysteresis model (J–A) and the Fourier hysteresis model. The traditional Jiles–Atherton hysteresis model is mainly suitable for fitting the saturation hysteresis loop, but the fitting error is relatively large for internal minor hysteresis loops. In contrast, the Fourier hysteresis model is suitable for fitting the minor hysteresis loops because the corresponding magnetic induction strength or magnetic field is lower and the waveform distortion is small. Moreover, Fourier series expansion can be expressed with fewer terms, which is convenient for parameter fitting. Through examples, the results show that the hybrid hysteresis model can take advantage of the strengths of each model, not only reducing computational complexity, but also ensuring high fitting accuracy and loss calculation accuracy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Funded by:UKRI | UK Carbon Capture and Sto...UKRI| UK Carbon Capture and Storage Research Centre 2017 (UKCCSRC 2017)Nilay Shah; Minh T. Ho; Husain Bahzad; Niall Mac Dowell; Paul S. Fennell; Matthew E. Boot-Handford; Salman Masoudi Soltani; Salman Masoudi Soltani;handle: 10044/1/72189
Abstract In this work, a novel hydrogen production process (Integrated Chemical Looping Water Splitting “ICLWS”) has been developed. The modelled process has been optimised via heat integration between the main process units. The effects of the key process variables (i.e. the oxygen carrier-to-fuel ratio, steam flow rate and discharged gas temperature) on the behaviour of the reducer and oxidiser reactors were investigated. The thermal and exergy efficiencies of the process were studied and compared against a conventional steam-methane reforming (SMR) process. Finally, the economic feasibility of the process was evaluated based on the corresponding CAPEX, OPEX and first-year plant cost per kg of the hydrogen produced. The thermal efficiency of the ICLWS process was improved by 31.1% compared to the baseline (Chemical Looping Water Splitting without heat integration) process. The hydrogen efficiency and the effective efficiencies were also higher by 11.7% and 11.9%, respectively compared to the SMR process. The sensitivity analysis showed that the oxygen carrier–to-methane and -steam ratios enhanced the discharged gas and solid conversions from both the reducer and oxidiser. Unlike for the oxidiser, the temperature of the discharged gas and solids from the reducer had an impact on the gas and solid conversion. The economic evaluation of the process indicated hydrogen production costs of $1.41 and $1.62 per kilogram of hydrogen produced for Fe-based oxygen carriers supported by ZrO2 and MgAl2O4, respectively - 14% and 1.2% lower for the SMR process H2 production costs respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Doctoral thesis 2015Authors: Lempereur, Morine;La croissance secondaire est à l'origine de l'accumulation de biomasse pérenne par les arbres et détermine en partie la capacité des écosystèmes forestiers à stocker du carbone. Cependant, les contraintes environnementales sur la croissance en milieu méditerranéen sont encore mal décrites et nous ne savons pas comment les changements climatiques futurs vont les modifier. L'objectif de la thèse est de déterminer, principalement à partir de l'étude de l'allocation du carbone à la croissance secondaire, les réponses fonctionnelles saisonnières et interannuelles du chêne vert (Quercus ilex L.) aux variations climatiques en région méditerranéenne. L'utilisation de différentes approches expérimentales, à des échelles spatiales allant du cerne à l'écosystème et à des échelles temporelles allant de la journée à plusieurs dizaines d'années, a permis de mettre en évidence l'effet de différentes contraintes environnementales (disponibilité en eau, réchauffement de la température, et densité du peuplement) sur la croissance secondaire et la composition isotopique du cerne. L'étude de la phénologie de la croissance montre que celle-ci est contrôlée directement par les températures hivernales et le déficit hydrique, plus que par la disponibilité en éléments carbonés issus de la photosynthèse. De 1968 à 2013, les changements climatiques ont entrainé une contrainte hydrique de plus en plus précoce qui s'est trouvée compensée par un début de croissance initié plus tôt dans l'année, sous l'effet du réchauffement des températures hivernales, et une meilleure efficacité d'utilisation de l'eau, sous l'effet de l'augmentation de la concentration en CO2 atmosphérique. La réduction de la mortalité et l'augmentation de la croissance observée dans des parcelles éclaircies montre que cette pratique sylvicole permet de préparer les taillis de chêne vert à l'intensification de la sècheresse prévue pour la région méditerranéenne. Tree secondary growth is responsible for woody biomass accumulation and is a major component of carbon storage in forest ecosystems. Environmental constraints on secondary growth in Mediterranean ecosystems must, however, be described in more to details to better understand how they will be modified by climate change. This dissertation aims at studying the functional responses of Mediterranean holm oak (Quercus ilex) to seasonal and inter-annual climate variations through the study of carbon allocation to secondary growth. Different experimental approaches, at spatial scales ranging from tree rings to the ecosystem and at temporal scales from the day to several decades, were used to identify the main environmental constraints (water availability, temperature warming, competition) to secondary growth and carbon isotopic composition of tree rings. The phenology of stem growth shows evidence for a direct environmental control on annual growth by winter temperature and summer drought that is more limiting than the carbon supply from photosynthesis. Climate change from 1968 to 2013 resulted in earlier water limitation on secondary growth, which was compensated by earlier growth onset, due to warmer winter temperature, and higher water use efficiency, due to increased atmospheric CO2 concentration. Thinning reduced tree mortality and increased stem growth, so thinning management in old holm oak coppices could prepare the ecosystem to better withstand the increasing drought forecasted for the Mediterranean region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Karlsruhe Publicly fundedFunded by:EC | RI Impact PathwaysEC| RI Impact PathwaysGiancarlo Ferrera; Giancarlo Ferrera; T. P. Watson; Oliver Fischer; Oliver Fischer; S. Fiorendi; C. Bhat; Olivier Leroy; M. K. Yanehsari; V. Arı; Simone Bologna; R. Aleksan; S. Myers; Leonid Rivkin; G. Catalano; S. V. Furuseth; Nathaniel Craig; M. Ramsey-Musolf; M. Merk; H. J. He; J. Proudfoot; X. Jiang; S. Kowalski; H. Chanal; Roderik Bruce; Radja Boughezal; S. Atieh; D. Liberati; E. Leogrande; Fady Bishara; Fady Bishara; O. Panella; O. Panella; Jiayin Gu; Lance D. Cooley; Alexander Ball; Paolo Castelnovo; A. Blondel; P. Sphicas; F. Dordei; Samuele Mariotto; Samuele Mariotto; I. Bellafont; A. Abada; Peter Braun-Munzinger; K. J. Eskola; J. M. Valet; Maria Paola Lombardo; Maria Paola Lombardo; Ph. Lebrun; S. P. Das; H. J. Yang; Luc Poggioli; Leonel Ferreira; Abhishek M. Iyer; A. Saba; Giovanni Volpini; Giovanni Volpini; Valeria Braccini; Federico Carra; S. J. De Jong; Daniela Bortoletto; Ayres Freitas; Jürgen Reuter; T. Sian; T. Sian; T. Sian; M. Nonis; G. Vorotnikov; V. Yermolchik; S. Jadach; T. Marriott-Dodington; M. Widorski; Jac Perez; Sinan Kuday; Gianluigi Arduini; J. Cervantes; H. Duran Yildiz; Victor P. Goncalves; Anke-Susanne Müller; G. Rolandi; M. Demarteau; Marumi Kado; Marumi Kado; Michael Syphers; Ryu Sawada; T. Podzorny; Sara Khatibi; Colin Bernet; Yuji Enari; M. Morrone; Y. Dydyshka; Alessandro Polini; Alessandro Polini; J. B. De Vivie De Regie; V. Raginel; M. Panareo; Patrick Draper; Y. Bai; V. Guzey; I. Tapan; D. Woog; A. Crivellin; Andrea Bastianin; M. Zobov; Caterina Vernieri; A. Carvalho; S. Rojas-Torres; N. Pukhaeva; O. Bolukbasi; Guilherme Milhano; M. Mohammadi Najafabadi; Andreas Salzburger; J. Gutierrez; D. K. Hong; A. Apyan; Peter Skands; S. Bertolucci; S. Bertolucci; Masaya Ishino; M. A. Pleier; T. Hoehn; C. Bernini; S. Baird; H. D. Yoo; S. Holleis; Adarsh Pyarelal; Clemens Lange; J. L. Biarrotte; C. Marquet; Wojciech Kotlarski; J. Barranco García; V. Smirnov; Ingo Ruehl; F. Couderc; O. Grimm; Ricardo Gonçalo; Enrico Scomparin; Enrico Scomparin; Giulia Sylva; Oreste Nicrosini; Oreste Nicrosini; Alessandro Tricoli; R. Contino; Hubert Kroha; Y. Zhang; Roberto Ferrari; Roberto Ferrari; Giuseppe Montenero; T. Srivastava; Luca Silvestrini; Marco Andreini; I. Aichinger; Brennan Goddard; C. Andris; P. N. Ratoff; G. Zick; Jorg Wenninger; Andrea Malagoli; M. Moreno Llácer; C. Han; Mauro Chiesa; Livio Fanò; Livio Fanò; S. M. Gascon-Shotkin; B. Strauss; W. Da Silva; Jana Faltova; Berndt Müller; Berndt Müller; M. Kordiaczyńska; André Schöning; Francesco Giffoni; M. Aburaia; Chiu-Chung Young; D. Chanal; Holger Podlech; G. Yang; M. Skrzypek; W. M. Yao; M. Podeur; M. I. Besana; Angelo Infantino; B. Riemann; German F. R. Sborlini; E. Bruna; E. Bruna; D. Saez de Jauregui; R. Patterson; Filippo Sala; Andrzej Siodmok; E. Palmieri; Marcello Abbrescia; Marcello Abbrescia; L. Deniau; David Olivier Jamin; V. Baglin; F. Cerutti; Shehu S. AbdusSalam; P. Costa Pinto;handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
European physical journal special topics 228(2), 261-623 (2019). doi:10.1140/epjst/e2019-900045-4 Published by Springer, Berlin ; Heidelberg
CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:BMJ Josef Veselka; Morten Jensen; Max Liebregts; Robert M Cooper; Jaroslav Januska; Maksim Kashtanov; Maciej Dabrowski; Peter Riis Hansen; Hubert Seggewiss; Eva Hansvenclova; Henning Bundgaard; Jurrien ten Berg; Rodney Hilton Stables; Lothar Faber;pmid: 31471463
Objective The current guidelines suggest alcohol septal ablation (ASA) is less effective in hypertrophic obstructive cardiomyopathy (HOCM) patients with severe left ventricular hypertrophy, despite acknowledging that systematic data are lacking. Therefore, we analysed patients in the Euro-ASA registry to test this statement. Methods We compared the short-term and long-term outcomes of patients with basal interventricular septum (IVS) thickness <30 mm Hg to those with ≥30 mm Hg treated using ASA in nine European centres. Results A total of 1519 patients (57±14 years, 49% women) with symptomatic HOCM were treated, including 67 (4.4%) patients with IVS thickness ≥30 mm. The occurrence of short-term major adverse events were similar in both groups. The mean follow-up was 5.4±4.3 years and 5.1±4.1 years, and the all-cause mortality rate was 2.57 and 2.94 deaths per 100 person-years of follow-up in the IVS <30 mm group and the IVS ≥30 mm group (p=0.047), respectively. There were no differences in dyspnoea (New York Heart Association class III/IV 12% vs 16%), residual left ventricular outflow tract gradient (16±20 vs 16±16 mm Hg) and repeated septal reduction procedures (12% vs 18%) in the IVS <30 mm group and IVS ≥30 mm group, respectively (p=NS for all). Conclusions The short-term results and the long-term relief of dyspnoea, residual left ventricular outflow obstruction and occurrence of repeated septal reduction procedures in patients with basal IVS ≥30 mm is similar to those with IVS <30mm. However, long-term all-cause and cardiac mortality rates are worse in the ≥30 mm group.
PURE Aarhus Universi... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Beilstein Institut Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J.;Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Beilstein Journal of NanotechnologyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen Published in a Diamond OA journal 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Beilstein Journal of NanotechnologyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Filipe Joel Soares; António Coelho; José Iria; Fernando Cassola; Aydogan Ozdemir; Nuno Fonseca; António Barbosa;Abstract Office buildings consume a significant amount of energy that can be reduced through behavioral change. Gamification offers the means to influence the energy consumption related to the activities of the office users. This paper presents a new mobile gamification platform to foster the adoption of energy efficient behaviors in office buildings. The gamification platform is a mobile application with multiple types of dashboards, such as (1) an information dashboard to increase the awareness of the users about their energy consumption and footprint, (2) a gaming dashboard to engage users in real-time energy efficiency competitions, (3) a leaderboard to promote peer competition and comparison, and (4) a message dashboard to send tailor-made messages about energy efficiency opportunities. The engagement and gamification strategies embedded in these dashboards exploit economic, environmental, and social motivations to stimulate office users to adopt energy efficient behaviors without compromising their comfort and autonomy levels. The gamification platform was demonstrated in an office building environment. The results suggest electricity savings of 20%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Fu, Xiaotong; Yan, Shuai; Chen, Zhifu; Xu, Xiaoyu; Ren, Zhuoxiang;doi: 10.3390/en17102326
Accurately calculating the losses of ferromagnetic materials is crucial for optimizing the design and ensuring the safe operation of electrical equipment such as motors and power transformers. Commonly used loss calculation models include the Bertotti empirical formula and hysteresis models. In this paper, a new hybrid hysteresis model method is proposed to calculate losses—namely, the combination of the Jiles–Atherton hysteresis model (J–A) and the Fourier hysteresis model. The traditional Jiles–Atherton hysteresis model is mainly suitable for fitting the saturation hysteresis loop, but the fitting error is relatively large for internal minor hysteresis loops. In contrast, the Fourier hysteresis model is suitable for fitting the minor hysteresis loops because the corresponding magnetic induction strength or magnetic field is lower and the waveform distortion is small. Moreover, Fourier series expansion can be expressed with fewer terms, which is convenient for parameter fitting. Through examples, the results show that the hybrid hysteresis model can take advantage of the strengths of each model, not only reducing computational complexity, but also ensuring high fitting accuracy and loss calculation accuracy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Funded by:UKRI | UK Carbon Capture and Sto...UKRI| UK Carbon Capture and Storage Research Centre 2017 (UKCCSRC 2017)Nilay Shah; Minh T. Ho; Husain Bahzad; Niall Mac Dowell; Paul S. Fennell; Matthew E. Boot-Handford; Salman Masoudi Soltani; Salman Masoudi Soltani;handle: 10044/1/72189
Abstract In this work, a novel hydrogen production process (Integrated Chemical Looping Water Splitting “ICLWS”) has been developed. The modelled process has been optimised via heat integration between the main process units. The effects of the key process variables (i.e. the oxygen carrier-to-fuel ratio, steam flow rate and discharged gas temperature) on the behaviour of the reducer and oxidiser reactors were investigated. The thermal and exergy efficiencies of the process were studied and compared against a conventional steam-methane reforming (SMR) process. Finally, the economic feasibility of the process was evaluated based on the corresponding CAPEX, OPEX and first-year plant cost per kg of the hydrogen produced. The thermal efficiency of the ICLWS process was improved by 31.1% compared to the baseline (Chemical Looping Water Splitting without heat integration) process. The hydrogen efficiency and the effective efficiencies were also higher by 11.7% and 11.9%, respectively compared to the SMR process. The sensitivity analysis showed that the oxygen carrier–to-methane and -steam ratios enhanced the discharged gas and solid conversions from both the reducer and oxidiser. Unlike for the oxidiser, the temperature of the discharged gas and solids from the reducer had an impact on the gas and solid conversion. The economic evaluation of the process indicated hydrogen production costs of $1.41 and $1.62 per kilogram of hydrogen produced for Fe-based oxygen carriers supported by ZrO2 and MgAl2O4, respectively - 14% and 1.2% lower for the SMR process H2 production costs respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
