- home
- Advanced Search
- Energy Research
- DE
- GB
- AU
- Energy Procedia
- Energy Research
- DE
- GB
- AU
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Authors: Fritz, Susanne; Ebert, Stefanie; Herguth, Axel; Hahn, Giso;AbstractIn this study the influence of the crystallographic surface orientation of n-type Si wafers on the contact formation of Ag/Al thick film pastes to p+-type Si layers is investigated. Therefore, n-type Si wafers with two different crystallographic orientations, namely polished (111) and (100) FZ wafers, with BBr3 based emitter and 75 nm SiNx:H are screen-printed with Ag/Al paste. Then contacts are fired in either a slow firing process or a fast one with the same peak temperature. Afterwards, contacts are prepared for scanning electron microscopy (SEM) analysis. The Ag/Al contact spots show different shapes on the differently oriented surfaces. For the slow firing process, no significant difference in number and size of the contacts spots can be found for the two surfaces. For samples fired in the fast firing process, the density and size of the contact spots on (100)-oriented surfaces is strongly reduced, whereas for the (111) surfaces only a slight reduction in density is visible as compared to the slow firing process.
Energy Procedia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2015Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Konstanzer Online-Publikations-SystemArticle . 2015Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Weng, Matthias; Günther, Claas Georg; Kather, Alfons;handle: 11420/2231
AbstractIn contrast to an Oxyfuel process with pulverised coal (PC) firing, possible advantages of a circulating fluidised bed combustion (CFBC) are the in-furnace sulphur dioxide removal no additional sulphur dioxide removal downstream the steam generator might be necessary and the feasibility for concepts with a reduced flue gas recirculation. In [1] design conditions for the overall process of an Oxyfuel CFBC with highest flue gas recirculation up to 75% are compared to concepts with less recycled flue gas. Compared to [1], this work is not focussed on design aspects of the steam generator but rather on the changing structure of auxiliary power demand of an integrated overall process caused by a reduced flue gas recirculation. At full load operation and under realistic boundary conditions achievable efficiencies of an Oxyfuel CFBC will be examined and compared to the PC-fired Oxyfuel process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Sweden, SwedenPublisher:Elsevier BV Liquid-vapor flow in porous media is studied in this article. To fulfill this goal, a double-distribution-function lattice Boltzmann (LB) model is proposed based on the separate-phase governing equations at the representative elementary volume (REV) scale. Importantly, besides the Darcy force and capillary force, which were commonly included in previous studies, the LB model in this article also considers the inertial force characterized by the Forchheimer term. This feature enables the model to offer an effective description of liquid-vapor flow in porous media at low, intermediate and even high flow rates. We validated the LB model by simulating a single-phase flow in porous media driven by a pressure difference and found its results are in good agreement with the available analytical solutions. We then applied the model to study water-vapor flow in a semi-infinite porous region bounded by an impermeable and heated wall. The numerical simulation reveals the flow and mass transfer characteristics under the compounding effects of inertial, Darcy and capillary forces. Through a comparison with the results given by the generalized Darcy’s law, our numerical results directly evidence that the inertial force is a dominating factor when a fluid passes through porous media at an intermediate or high flow rate.
CORE arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2019Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2019Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Heinrich Kurz; K. Wolter; H. Windgassen; A. Safiei;AbstractIn this work we report on successful direct contacting of high sheet resistance (RSH) emitter at 100Ω/sq by emitter profile manipulation. The formation of lightly doped emitter via POCl3 diffusion was investigated and optimized by the variation of temperature, time and gas fluxes. Sheet resistance mapping and emitter profile analysis have been done by four-point-probe and Electrochemical Capacitance Voltage (ECV) measurements. By increasing the depth of the n++ layer and at the same time reducing the peak concentration of inactive phosphorous doping, an efficiency gain of up to 0.7% absolute was achieved for multicrystalline silicon (mc-Si) solar cells. Suns-VOC measurements show an even higher gain of up to 1% absolute. In this work five different silver pastes are analysed accompanied by three different simulated grid designs. Electroluminescence imaging technique was used to characterize the spatially-resolved electrical properties of the solar cells. Based on these investigations we evaluated a 160Ω/sq emitter and could demonstrate by laser doping that the minimum n++ layer depth for high fill factors is approx. 25nm leading to 0.4%abs efficiency gain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 17 Mar 2017 GermanyPublisher:Elsevier BV Authors:Bredemeier, Dennis;
Walter, Dominic; Herlufsen, Sandra; Schmidt, Jan;Bredemeier, Dennis
Bredemeier, Dennis in OpenAIREIn this contribution, we focus on improving the fundamental understanding of the carrier lifetime degradation and regeneration observed in block-cast multicrystalline silicon (mc-Si) wafers under illumination at elevated temperature. We observe a pronounced degradation in lifetime at 1 sun light intensity and 75̊C after rapid thermal annealing (RTA) in a belt-firing furnace at a set peak temperature of 900̊C. However, almost no lifetime instability is detected in mc-Si wafers which are fired at a peak temperature of only 650̊C, clearly showing that the firing step is triggering the degradation effect. Lifetime spectroscopy reveals that the light-induced recombination centre is a deep-level centre with an asymmetric electron-to-hole capture cross section ratio of 20±7. After completion of the degradation, the lifetime is observed to recover and finally reaches even higher carrier lifetimes compared to the initial state. While the lifetime degradation is found to be homogeneous, the regeneration shows an inhomogeneous behaviour, which starts locally and spreads later laterally throughout the sample. Furthermore, the regeneration process is extremely slow with time constants of several hundred hours. We demonstrate, however, that by increasing the regeneration temperature, it is possible to significantly speed up the regeneration process so that it might become compatible with industrial solar cell production. To explain the observed lifetime evolution, we propose a defect model, where metal precipitates in the mc-Si bulk dissolve during the RTA treatment and the mobile metal atoms bind to a homogeneously distributed impurity. Restructuring and subsequent dissociation of this defect complex is assumed to cause the lifetime degradation, whereas a subsequent diffusion of the mobile species to the sample surfaces and crystallographic defects explains the regeneration.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 SwitzerlandPublisher:Elsevier BV Authors:Lecampion, Brice;
Quesada, Daniel; Loizzo, Matteo;Lecampion, Brice
Lecampion, Brice in OpenAIREBunger, Andrew;
+3 AuthorsBunger, Andrew
Bunger, Andrew in OpenAIRELecampion, Brice;
Quesada, Daniel; Loizzo, Matteo;Lecampion, Brice
Lecampion, Brice in OpenAIREBunger, Andrew;
Bunger, Andrew
Bunger, Andrew in OpenAIREKear, James;
Deremble, Laure;Kear, James
Kear, James in OpenAIREDesroches, Jean;
Desroches, Jean
Desroches, Jean in OpenAIREAbstractThe concept of CO2 storage relies on the long-term sealing properties of both the geological trap and the wells needed to inject and monitor CO2. Well integrity, a classical topic in the oil and gas industry, is thus critical for the performance of any CO2 storage complex in terms of containment. Thanks to the very low permeability of cement (typically less than 0.1 mDarcy); a properly cemented well ensures hydraulic isolation between reservoirs layers and shallow aquifers. Moreover, such low matrix permeability limits the cement/ CO2 interactions over the active period of a storage complex (of the order of 100 years) to a few meters. Leaks from a cased and cemented well, if any, are known to occur only through defects: mud-channel (in case of poor cement placement), cracks within cement and more importantly micro-annulus at the casing/cement or/and cement/formation interfaces. This last category of defects can lead to substantial leakage rate. Its importance has been recognized by the oil and gas industry since the 1960’s leading to the study of cement “bonding” properties. In the scope of CO2 storage, the understanding, modeling and monitoring of the occurrence of micro-annulus becomes of prime importance. We analyze the complete loading history of a cemented completion from cement placement to routine well operations. Further to classical failure type assessment used in the oil and gas industry (i.e. fail/no fail, good cement/bad cement), we aim at quantifying the vertical extent, azimuthal coverage and width of the created defects to adequately transform failure types into leakage pathways. Such a prediction of connected defects/leakage pathways along a cemented well imposes to consistently integrate the effects of lithology, geomechanics, cement placement (fluid loss, hydration), completion design and knowledge of pressure and thermal variation during the life of the well.The modeling of such a problem can be made tractable by recognizing the intrinsic hierarchy of lengthscales of a cemented well (i.e. the cement annulus is much thinner than the well dimension). The original three-dimensional problem is reduced to a much simpler two-dimensional one, which in turn can even be further reduced to a one-dimensional configuration in a lot of practical cases.Typical cases of interface debonding due to well de-pressurization and thermal cooling taking place after cement placement are carefully analyzed. Furthermore, we specially focus on injectors. Despite the use of all current best practices during well construction, the injection in itself can lead to the propagation of a debonding crack between cement and casing or cement and formation due to the high pressure generated at the perforations level. Such a problem has already been reported in hydraulic fracturing operations, and is a reasonable explanation of observed well leaks for injectors. A consistent model predicting the initiation and propagation of interface debonding during injection operations is then compared to carefully designed laboratory experiments. Such experiments also confirm that the azimuthal coverage of the interface debonding is only partial (i.e. less than 360°), an observation consistent with cement evaluation logs acquired on CO2 injectors. Finally, best practices to achieve and retain well integrity of CO2 injectors are highlighted from a careful examination of the results of both the model and the experiment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Elsevier BV Stefan Lindekugel; Bernd Steinhauser; Stefan Reber; M. Drießen; Nena Milenkovic; Stefan Janz; Jan Benick; Diana Amiri;AbstractWe present n-type epitaxially grown wafers deposited in a reactor that allows a process transfer to inline high-throughput reactors. Those wafers exhibit an effective lifetime of up to 1720 μs locally for a phosphorous concentration of 2·1015 cm-3 and a wafer thickness of about 100 μm. In these wafers the most detrimental defects are stacking faults with polycrystalline silicon inclusions. Comparing two samples with stacking faults densities differing by one order of magnitude revealed a difference in average effective minority carrier lifetime of also one order of magnitude (reduction from more than 1500 μs down to 111 μs for the defective sample).A solar cell fabricated from a 200 μm thick epitaxial wafer of low stacking fault density and a phosphorous concentration of 3·1016 cm-3 reaches an independently confirmed efficiency of 20%, an open circuit voltage of up to 658 mV, a short circuit current density of up to 39.6 mA/cm2 and a fill factor of up to 76.9%. Differences between this cell and FZ references can be attributed to a reduced bulk lifetime caused by the high doping concentration and most probably additional recombination due to polycrystalline silicon inclusions in stacking faults, although their amount is comparably low. A second solar cell made of an epitaxial wafer with a high stacking fault density exhibits an efficiency reduction of 0.5% absolute compared to the cell made of the high quality epitaxial wafer. This result underlines the importance of minimizing the stacking fault density in epitaxial wafers, in particular the density of those with polysilicon inclusions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Will Conway;Paul Feron;
Dan Maher;Paul Feron
Paul Feron in OpenAIREGraeme Puxty;
+2 AuthorsGraeme Puxty
Graeme Puxty in OpenAIREWill Conway;Paul Feron;
Dan Maher;Paul Feron
Paul Feron in OpenAIREGraeme Puxty;
Graeme Puxty
Graeme Puxty in OpenAIRELeigh Wardhaugh;
Henk Botma;Leigh Wardhaugh
Leigh Wardhaugh in OpenAIREAbstract Benzylamine (BZA) has been identified as an attractive aromatic amine for CO 2 capture applications. During lab and pilot scale testing it was found to have excellent mass transfer and reboiler energy performance as well as low viscosity, high thermal stability, low ecotoxicity, low corrosion potential and low cost. However its vapour pressure in aqueous solution was unexpectedly high resulting in excessive evaporative loss and process disruption. To address this a study was undertaken to find additives to use with BZA that would reduce its vapour pressure in aqueous solution. Using Hansen Solubility Parameters candidate compounds were identified and tested. This resulted in a new formulation that reduced the BZA vapour pressure and eliminated the evaporative loss issues while maintaining its otherwise good performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Michael Nimtz; Hans Joachim Krautz;AbstractThe German Energiewende is resulting in high grid load changes caused by renewable energies. Therefore flexibility of power plants is getting more and more important. Future CCS power plants are usually equipped with more components than conventional power plants, resulting in a more complex and inert reaction on changes in power output. Additionally, due to the change in price structures and higher fixed and operational costs for CCS power plants, it is harder for them to be economically efficient. This study will show different options to increase the flexibility of CCS power plants and evaluate their benefits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Christoph Luechinger; O. Valentin; T. Barthel; P. Wawer; M. Heimann; J.W. Mueller; P. Klaerner; M. Traeger; A. Mette;AbstractNext-generation, crystalline-silicon solar cells might use different metallization concepts compared to current state-of-the-art cell designs. One specific design uses a thin aluminum back layer created with a physical vapor deposition process. In the solar industry, there is no reliable, cost-effective method of directly connecting metallic ribbons to such an aluminum layer to create cell strings. In the semiconductor industry ultrasonically bonding aluminum ribbon to the aluminum metallization of power semiconductors or high-volume production is a well-established process. This paper describes adapting ultrasonic ribbon bonding and the equipment used in the semiconductor industry to interconnect crystalline-silicon solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu