- home
- Advanced Search
- Energy Research
- 13. Climate action
- GB
- DE
- AU
- Energy Procedia
- Energy Research
- 13. Climate action
- GB
- DE
- AU
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jörg Maier; Gosia Stein-Brzozowska; Günter Scheffknecht;AbstractAlthough the road-map of the oxy-fuel process seems to be very advanced, there are still plenty of open questions. One of the significant ones is the corrosive behaviour of the heat exchanger surfaces. The Institute of Combustion and Power Plant Technology, University of Stuttgart, performs research on the fireside corrosion under oxy-fuel and conventional combustion conditions for the current and supercritical power plants considering the influence of combustion modus, gas atmosphere and fly ash deposits on the waterwall and superheater surfaces. Since the oxy-fuel-combustion atmosphere is composed of recirculated flue gases and pure oxygen, significantly higher concentrations of CO2, SO2 and H2O are present compared to the conventional combustion of coal with air as an oxidizer. In the here presented study the influence of an oxy-fuel combustion of a hard-coal on the surface of selected superheater materials is discussed and compared to the results obtained for lignite. Especially the interactions between the flue gas atmosphere, ash deposits and heat exchanger materials are studied in detail. The investigation encompassed in this paper has been focused on impacts of oxide-scale growth, carbon enrichment of the materials and sulphur-induced corrosion.Increased sulphur-induced corrosion has been observed in samples exposed to the oxy-combustion atmosphere. The noticed higher depth of corrosive attack of the oxy-fuel samples might be explained by a higher partial pressure of SO2 which is characteristic for oxy-fuel process. Moreover in certain cases the sulphur might be released by the deposits. Beside that, the oxy-fuel samples were exposed to much higher partial pressures of carbon dioxide comparing to the air-case leading apparently to rapid and massive internal carbon enrichment in the oxide scale. Moreover dependence between the chromium content and oxidation ability of the austenitic materials surfaces was noticed under oxy-fuel conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kunio Yoshikawa; Norfadhilah Hamzah; Mohammad Zandi; Koji Tokimatsu;Abstract This paper characterized the wood pellet and torrefied wood pellet fuel as compared to coal for 100 MW co-firing power generation plant. There were five experiments to characterise the chemical and physical properties of coal, wood pellet and torrefied wood pellet namely moisture analysis, Thermo gravimetric Analyser (TGA), Bomb Calorimeter, Organic Elemental Analyser and Scanning Electron Microscope (SEM). The moisture analysis result from moisture analyser and TGA shows that the moisture content of torrefied wood pellet is lower than wood pellet at 6.760% and 3.629%. Moreover, the volatile matter, hydrogen and nitrogen content of torrefied wood pellet is lower than wood pellet at 65.20%, 5.993% and 0.4078% correspondingly. The calorific value, fixed carbon content, ash and sulphur also increase in torrefied wood pellet at 20.68 MJ/kg, 28.85%, 2.321% and 0.1656% respectively. In general, torrefaction improve the fuel properties of wood pellet similar to coal. The 100 MW direct co-firing power plant provides less capital investment, operation and maintenance cost for low rate co-firing ratio. However, there is economic challenges for high rate co-firing substation of torrefied wood pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Melchior Moos; Dirk Uwe Sauer; Albert Moser; Ricardo Alvarez; Zhuang Cai; Matthias Leuthold; Tjark Thien; Christian Bussar; Philipp Wolf; Hengsi Chen;AbstractThe future European energy supply system will have a high share of renewable energy sources (RES) to meet the greenhouse gas emission policy of the European Commission. Such a system is characterized by the need for a strongly interconnected energy transport grid as well as a high demand of energy storage capacities to compensate the time fluctuating characteristic of most RE generation technologies. With the RE generators at the location of high harvest potential, the appropriate dimension of storage and transmission system between different regions, a cost efficient system can be achieved. To find the preferred target system, the optimization tool GENESYS (Genetic Optimization of a European Energy System) was developed. The example calculations under the assumption of 100% self-supply, show a need of about 2,500 GW RES in total, a storage capacity of about 240,000 GWh, corresponding to 6% of the annual energy demand, and a HVDC transmission grid of 375,000 GWkm. The combined cost for generation, storage and transmission excluding distribution, was estimated to be 6.87 ct/kWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Martens, S.; Hangx, S.; Juhlin, C.; Kühn, M.; Kempka, T.;The European Geosciences Union (EGU) brings together geoscientists from all over the world covering all disciplines of the Earth, planetary and space sciences. This geoscientific interdisciplinarity is needed to tackle the challenges of the future. One major challenge for humankind is to provide adequate and reliable supplies of affordable energy and other resources in efficient and environmentally sustainable ways. This Energy Procedia issue provides an overview of the contributions of the Division on Energy, Resources & the Environment (ERE) at the EGU General Assembly 2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Beibei Xu; Diyi Chen; Diyi Chen; M. Venkateshkumar; Yu Xiao; Yanqiu Xing;Abstract Global primary energy consumption will continue to increase with a high rate to 2050, which will be a big challenge for countries to meet both global and regional energy demand. Pumped storage stations (PSS) integrated to a hybrid power system (HPS) with solar and wind power for China are under construction to tussle with this challenge. Historically, modeling of a PSS integrated HPS has been ignored the interaction effect between the shaft vibration and the governing strategies, which will increase the dynamic risk of PSS disconnected immediately to HPS. Here we unify the models of the hydro-turbine governing system and hydro-turbine generator units with a novel expression of hydraulic forces. We quantize all the parameter’s interaction contributions of PSS integration to HPS and validate this model with the existing models. Finally, we show the feasibility of PSS’s model in integrating of a HPS under steady and fault scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Nabi, Md Nurun; Rasul, Mohammad G; Gudimetla, Prasad V;Abstract The main objective of this study was to develop a thermodynamic model to analyse engine performance and combustion behavior of a single cylinder, four-stroke, naturally aspirated, direct injection (DI) diesel engine. The model was developed with a commercial GT-Power software. Various sub-models for different systems including intake, exhaust, fuel injection, combustion, and heat transfer rate were combined for thermodynamic analysis of engine performance and combustion behaviour. The engine rotational speed, start of injection timing and compression ratio were considered as variables. The engine rotational speeds were varied from 800 rpm to 2500 rpm, the start of injection timings was ranged from 15o crank angle (CA) before top dead centre (bTDC) to 15o CA after top dead centre (aTDC), and the compression ratios were changed from 13 to 25. Performance parameters such as indicated and brake power, brake thermal efficiency, friction, etc. and combustion parameters such as heat transfer rate and in-cylinder pressure are analysed at different engine rotational speed, injection timing, and compression ratio, and discussed accordingly. The optimum performance such as BTE, BT and BMEP were found at the engine speed of 1700 rpm, a start of injection timing of 10o bTDC, and a compression ratio of 20
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Clements, Lachlan; Chowdhury, Ashfaque A;Abstract Renewable energies are getting progressively widespread due to the growing worry of carbon discharges. There has been a substantial volume of advancement being made in renewable energy sources. One of the remarkable ones is wind power. The common myths of building a wind turbine in highways suburban, and coastal areas are the extent of the machine, and the turbulence may affect the performance of the turbine that ultimately may uncover a poor return on investment. In this paper, some laboratory testing was performed on a conventional turbine and a wind lens turbine to determine if there are any potential applications for the Wind lens turbines in a turbulent environment. Highways, coastal and suburban areas may prove appropriate for this kind of turbine. However, there is still additional analysis required on the effects that these turbines may have on local fauna migration patterns. It is also important to check if the noise pollution generated by the wind lens turbines are enough to cause disruption. Two different types of edges were also embraced to see whether performance in such a location relies more on blade type than the design of the turbine. From the testing in a lab-scale wind tunnel, it was found that on average the wind lens design provided a 40% increase in efficiency both in the Betz coefficient and tip speed ratio of the turbine. However, the wind lens turbine requires further assessment to determine its suitability in environments not exposed to constant wind currents such as highways. There is a possibility that the wind lens turbine can be applied in a turbulent setting with further assessment and enhancements to the manufacturing process of the turbine models.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV L. Brachert; Bernd Schallert; Earl Goetheer; Purvil Khakharia; Jan Mertens; Dominique Desagher;AbstractAmine based solvent used for CO2 capture can be lost during the process due to: degradation, vaporization, mechanical losses and aerosol (mist) formation. Only recently, studies have appeared pointing out that aerosols can dominate the total amine emission at pilot plant scale behind coal fired power plants. Future full scale amine scrubber installations will be imposed emission limit values (ELV) for a number of components including NH3 and the amine itself. Most likely these ELV will be expressed as maximum concentrations tolerated in the CO2 poor flue gas leaving the stack so it is important to prevent or cure amine aerosol emission. The study presents a novel combination of two existing measurement techniques, that measure: (i) amine emissions from the top of the absorber using FTIR and (ii) PSD of the incoming flue gas using the ELPI+. The study is the first to show how combining these two measurement techniques allows to predict the presence or absence of mist formation. This hypothesis is based on information obtained during several measurement campaigns on different pilot plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Efficient Power from Foss...UKRI| Efficient Power from Fossil Energy and Carbon Capture Technologies (EPFECCT)Yong Ren; Kai Seng Koh; Colin E. Snape; Chenggong Sun; Maxine Yew; Yuying Yan; Yuying Yan;“Off-the-shelf” devices have attracted much consideration lately, especially in emulsions production in droplet-based microfluidics. While many simple and cost-effective designs have been proposed and demonstrated, the functionability of these purported simple devices has been questioned, especially in emulsions generation for commercial scale. In this work, a simple needle-based device was used in the production of functional core-shell microcapsules of uniform sizes, typically in the range of 600 to 720 µm, and shell thickness of 20 to 110 µm, and C.V of 0.97 to 3.0%. These core-shell microcapsules are a new form of carbon capture materials, with carbon solvent encapsulated in thin polymeric shell. The microcapsules synthesized were subjected to absorption-desorption tests. This work has successfully demonstrated the use of off-the-shelf microdevice and its reliability for the production of functional microcapsules.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 42 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jon Gibbins; Mathieu Lucquiaud;AbstractIn a period where fast learning-curves for capture technologies can be expected it is important that plants built as carbon capture-ready avoid becoming potential stranded assets during the period of time when the plant operates without capture. At the same time recent evidence shows that decarbonisation of electricity generation cannot be achieved without a CCS option for gas plants. This article first proposes steam turbine design options to build combined cycle gas turbine plants as carbon capture-ready. Then steam cycle options for the existing fleet of coal-fired units are then presented. Although these plants have not been initially designed to operate with CCS it is possible to achieve effective thermodynamic integration–and an overall electricity output penalty in kWh per tonne of CO2 close to a plant built with capture from the outset–with appropriate steam turbine retrofits.Finally, novel insights into the design of capture-ready steam cycles are discussed for futureproofing pulverised coal plants that may have capture fitted after the first learning cycles of postcombustion capture technologies occur or that may be upgraded over their lifetimes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jörg Maier; Gosia Stein-Brzozowska; Günter Scheffknecht;AbstractAlthough the road-map of the oxy-fuel process seems to be very advanced, there are still plenty of open questions. One of the significant ones is the corrosive behaviour of the heat exchanger surfaces. The Institute of Combustion and Power Plant Technology, University of Stuttgart, performs research on the fireside corrosion under oxy-fuel and conventional combustion conditions for the current and supercritical power plants considering the influence of combustion modus, gas atmosphere and fly ash deposits on the waterwall and superheater surfaces. Since the oxy-fuel-combustion atmosphere is composed of recirculated flue gases and pure oxygen, significantly higher concentrations of CO2, SO2 and H2O are present compared to the conventional combustion of coal with air as an oxidizer. In the here presented study the influence of an oxy-fuel combustion of a hard-coal on the surface of selected superheater materials is discussed and compared to the results obtained for lignite. Especially the interactions between the flue gas atmosphere, ash deposits and heat exchanger materials are studied in detail. The investigation encompassed in this paper has been focused on impacts of oxide-scale growth, carbon enrichment of the materials and sulphur-induced corrosion.Increased sulphur-induced corrosion has been observed in samples exposed to the oxy-combustion atmosphere. The noticed higher depth of corrosive attack of the oxy-fuel samples might be explained by a higher partial pressure of SO2 which is characteristic for oxy-fuel process. Moreover in certain cases the sulphur might be released by the deposits. Beside that, the oxy-fuel samples were exposed to much higher partial pressures of carbon dioxide comparing to the air-case leading apparently to rapid and massive internal carbon enrichment in the oxide scale. Moreover dependence between the chromium content and oxidation ability of the austenitic materials surfaces was noticed under oxy-fuel conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kunio Yoshikawa; Norfadhilah Hamzah; Mohammad Zandi; Koji Tokimatsu;Abstract This paper characterized the wood pellet and torrefied wood pellet fuel as compared to coal for 100 MW co-firing power generation plant. There were five experiments to characterise the chemical and physical properties of coal, wood pellet and torrefied wood pellet namely moisture analysis, Thermo gravimetric Analyser (TGA), Bomb Calorimeter, Organic Elemental Analyser and Scanning Electron Microscope (SEM). The moisture analysis result from moisture analyser and TGA shows that the moisture content of torrefied wood pellet is lower than wood pellet at 6.760% and 3.629%. Moreover, the volatile matter, hydrogen and nitrogen content of torrefied wood pellet is lower than wood pellet at 65.20%, 5.993% and 0.4078% correspondingly. The calorific value, fixed carbon content, ash and sulphur also increase in torrefied wood pellet at 20.68 MJ/kg, 28.85%, 2.321% and 0.1656% respectively. In general, torrefaction improve the fuel properties of wood pellet similar to coal. The 100 MW direct co-firing power plant provides less capital investment, operation and maintenance cost for low rate co-firing ratio. However, there is economic challenges for high rate co-firing substation of torrefied wood pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Melchior Moos; Dirk Uwe Sauer; Albert Moser; Ricardo Alvarez; Zhuang Cai; Matthias Leuthold; Tjark Thien; Christian Bussar; Philipp Wolf; Hengsi Chen;AbstractThe future European energy supply system will have a high share of renewable energy sources (RES) to meet the greenhouse gas emission policy of the European Commission. Such a system is characterized by the need for a strongly interconnected energy transport grid as well as a high demand of energy storage capacities to compensate the time fluctuating characteristic of most RE generation technologies. With the RE generators at the location of high harvest potential, the appropriate dimension of storage and transmission system between different regions, a cost efficient system can be achieved. To find the preferred target system, the optimization tool GENESYS (Genetic Optimization of a European Energy System) was developed. The example calculations under the assumption of 100% self-supply, show a need of about 2,500 GW RES in total, a storage capacity of about 240,000 GWh, corresponding to 6% of the annual energy demand, and a HVDC transmission grid of 375,000 GWkm. The combined cost for generation, storage and transmission excluding distribution, was estimated to be 6.87 ct/kWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.01.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Martens, S.; Hangx, S.; Juhlin, C.; Kühn, M.; Kempka, T.;The European Geosciences Union (EGU) brings together geoscientists from all over the world covering all disciplines of the Earth, planetary and space sciences. This geoscientific interdisciplinarity is needed to tackle the challenges of the future. One major challenge for humankind is to provide adequate and reliable supplies of affordable energy and other resources in efficient and environmentally sustainable ways. This Energy Procedia issue provides an overview of the contributions of the Division on Energy, Resources & the Environment (ERE) at the EGU General Assembly 2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Beibei Xu; Diyi Chen; Diyi Chen; M. Venkateshkumar; Yu Xiao; Yanqiu Xing;Abstract Global primary energy consumption will continue to increase with a high rate to 2050, which will be a big challenge for countries to meet both global and regional energy demand. Pumped storage stations (PSS) integrated to a hybrid power system (HPS) with solar and wind power for China are under construction to tussle with this challenge. Historically, modeling of a PSS integrated HPS has been ignored the interaction effect between the shaft vibration and the governing strategies, which will increase the dynamic risk of PSS disconnected immediately to HPS. Here we unify the models of the hydro-turbine governing system and hydro-turbine generator units with a novel expression of hydraulic forces. We quantize all the parameter’s interaction contributions of PSS integration to HPS and validate this model with the existing models. Finally, we show the feasibility of PSS’s model in integrating of a HPS under steady and fault scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Nabi, Md Nurun; Rasul, Mohammad G; Gudimetla, Prasad V;Abstract The main objective of this study was to develop a thermodynamic model to analyse engine performance and combustion behavior of a single cylinder, four-stroke, naturally aspirated, direct injection (DI) diesel engine. The model was developed with a commercial GT-Power software. Various sub-models for different systems including intake, exhaust, fuel injection, combustion, and heat transfer rate were combined for thermodynamic analysis of engine performance and combustion behaviour. The engine rotational speed, start of injection timing and compression ratio were considered as variables. The engine rotational speeds were varied from 800 rpm to 2500 rpm, the start of injection timings was ranged from 15o crank angle (CA) before top dead centre (bTDC) to 15o CA after top dead centre (aTDC), and the compression ratios were changed from 13 to 25. Performance parameters such as indicated and brake power, brake thermal efficiency, friction, etc. and combustion parameters such as heat transfer rate and in-cylinder pressure are analysed at different engine rotational speed, injection timing, and compression ratio, and discussed accordingly. The optimum performance such as BTE, BT and BMEP were found at the engine speed of 1700 rpm, a start of injection timing of 10o bTDC, and a compression ratio of 20
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Clements, Lachlan; Chowdhury, Ashfaque A;Abstract Renewable energies are getting progressively widespread due to the growing worry of carbon discharges. There has been a substantial volume of advancement being made in renewable energy sources. One of the remarkable ones is wind power. The common myths of building a wind turbine in highways suburban, and coastal areas are the extent of the machine, and the turbulence may affect the performance of the turbine that ultimately may uncover a poor return on investment. In this paper, some laboratory testing was performed on a conventional turbine and a wind lens turbine to determine if there are any potential applications for the Wind lens turbines in a turbulent environment. Highways, coastal and suburban areas may prove appropriate for this kind of turbine. However, there is still additional analysis required on the effects that these turbines may have on local fauna migration patterns. It is also important to check if the noise pollution generated by the wind lens turbines are enough to cause disruption. Two different types of edges were also embraced to see whether performance in such a location relies more on blade type than the design of the turbine. From the testing in a lab-scale wind tunnel, it was found that on average the wind lens design provided a 40% increase in efficiency both in the Betz coefficient and tip speed ratio of the turbine. However, the wind lens turbine requires further assessment to determine its suitability in environments not exposed to constant wind currents such as highways. There is a possibility that the wind lens turbine can be applied in a turbulent setting with further assessment and enhancements to the manufacturing process of the turbine models.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV L. Brachert; Bernd Schallert; Earl Goetheer; Purvil Khakharia; Jan Mertens; Dominique Desagher;AbstractAmine based solvent used for CO2 capture can be lost during the process due to: degradation, vaporization, mechanical losses and aerosol (mist) formation. Only recently, studies have appeared pointing out that aerosols can dominate the total amine emission at pilot plant scale behind coal fired power plants. Future full scale amine scrubber installations will be imposed emission limit values (ELV) for a number of components including NH3 and the amine itself. Most likely these ELV will be expressed as maximum concentrations tolerated in the CO2 poor flue gas leaving the stack so it is important to prevent or cure amine aerosol emission. The study presents a novel combination of two existing measurement techniques, that measure: (i) amine emissions from the top of the absorber using FTIR and (ii) PSD of the incoming flue gas using the ELPI+. The study is the first to show how combining these two measurement techniques allows to predict the presence or absence of mist formation. This hypothesis is based on information obtained during several measurement campaigns on different pilot plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Efficient Power from Foss...UKRI| Efficient Power from Fossil Energy and Carbon Capture Technologies (EPFECCT)Yong Ren; Kai Seng Koh; Colin E. Snape; Chenggong Sun; Maxine Yew; Yuying Yan; Yuying Yan;“Off-the-shelf” devices have attracted much consideration lately, especially in emulsions production in droplet-based microfluidics. While many simple and cost-effective designs have been proposed and demonstrated, the functionability of these purported simple devices has been questioned, especially in emulsions generation for commercial scale. In this work, a simple needle-based device was used in the production of functional core-shell microcapsules of uniform sizes, typically in the range of 600 to 720 µm, and shell thickness of 20 to 110 µm, and C.V of 0.97 to 3.0%. These core-shell microcapsules are a new form of carbon capture materials, with carbon solvent encapsulated in thin polymeric shell. The microcapsules synthesized were subjected to absorption-desorption tests. This work has successfully demonstrated the use of off-the-shelf microdevice and its reliability for the production of functional microcapsules.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 42 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jon Gibbins; Mathieu Lucquiaud;AbstractIn a period where fast learning-curves for capture technologies can be expected it is important that plants built as carbon capture-ready avoid becoming potential stranded assets during the period of time when the plant operates without capture. At the same time recent evidence shows that decarbonisation of electricity generation cannot be achieved without a CCS option for gas plants. This article first proposes steam turbine design options to build combined cycle gas turbine plants as carbon capture-ready. Then steam cycle options for the existing fleet of coal-fired units are then presented. Although these plants have not been initially designed to operate with CCS it is possible to achieve effective thermodynamic integration–and an overall electricity output penalty in kWh per tonne of CO2 close to a plant built with capture from the outset–with appropriate steam turbine retrofits.Finally, novel insights into the design of capture-ready steam cycles are discussed for futureproofing pulverised coal plants that may have capture fitted after the first learning cycles of postcombustion capture technologies occur or that may be upgraded over their lifetimes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu