Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
190 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2025-2025
  • Closed Access
  • Restricted
  • GB
  • DE

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zihao Zhou; Yuan Ma; orcid bw Torsten Brezesinski;
    Torsten Brezesinski
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Torsten Brezesinski in OpenAIRE
    orcid Ben Breitung;
    Ben Breitung
    ORCID
    Harvested from ORCID Public Data File

    Ben Breitung in OpenAIRE
    +2 Authors

    An overview of high-entropy strategies for batteries is provided, emphasizing their unique structural/compositional attributes and positive effects on stability and performance, alongside a discussion of key challenges and future research directions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2025 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2025 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ziqi Zhang; orcid bw Peng Li;
    Peng Li
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Peng Li in OpenAIRE
    orcid bw Haoran Ji;
    Haoran Ji
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Haoran Ji in OpenAIRE
    orcid bw Hao Yu;
    Hao Yu
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Hao Yu in OpenAIRE
    +3 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Sustainable Energy
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Sustainable Energy
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Henrietta Homm;
    Henrietta Homm
    ORCID
    Harvested from ORCID Public Data File

    Henrietta Homm in OpenAIRE
    orcid Jarno Laakso;
    Jarno Laakso
    ORCID
    Harvested from ORCID Public Data File

    Jarno Laakso in OpenAIRE
    orcid Patrick Rinke;
    Patrick Rinke
    ORCID
    Harvested from ORCID Public Data File

    Patrick Rinke in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Mate...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physical Review Materials
    Article . 2025 . Peer-reviewed
    License: APS Licenses for Journal Article Re-use
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Mate...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Physical Review Materials
      Article . 2025 . Peer-reviewed
      License: APS Licenses for Journal Article Re-use
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Yuedan Zhao;
    Yuedan Zhao
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Yuedan Zhao in OpenAIRE
    orcid Nan Lu;
    Nan Lu
    ORCID
    Harvested from ORCID Public Data File

    Nan Lu in OpenAIRE
    Hao Shi; orcid Jianbei Huang;
    Jianbei Huang
    ORCID
    Harvested from ORCID Public Data File

    Jianbei Huang in OpenAIRE
    +1 Authors

    ABSTRACTLitter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism. Using the ARIDEC data collection and published literature, a global database on litter decomposition and corresponding environmental conditions in drylands was developed, comprising 2204 observations from 158 sites. Decomposition rates varied across the four dryland subregions, with the highest rates in the dry‐subhumid region (3.24% month−1), followed by semi‐arid (3.15% month−1), arid (2.62% month−1), and hyper‐arid (2.35% month−1) regions. Notably, the dry‐subhumid region exhibited the greatest variability. Anthropogenic systems, such as cropland (5.52% month−1) and urban ecosystems (7.88% month−1), demonstrated higher decomposition rates than natural systems (averaging 3.07% month−1). Across drylands, the decomposition rate followed an exponential function of decomposition duration (), influenced by litter quality, climate, and soil properties. Beyond decomposition duration, three boosted regression tree models were developed to identify the primary factors influencing early (R2 = 0.92), mid (R2 = 0.71), and late (R2 = 0.80) decomposition stages. In the early‐ and mid‐stages, precipitation, atmospheric temperature, and soil moisture were critical factors, while the UV index and initial nitrogen content of litter played significant roles in the early and mid‐phases, respectively. In the late phase, soil total nitrogen, soil organic carbon, and the initial C/N ratio of litter were the primary factors. Our findings reveal consistent temporal patterns in decomposition rates and the mechanisms underlying them in global dryland ecosystems. These insights can enhance the accuracy of biogeochemical models in drylands and improve predictions of their feedback to the climate system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2025 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2025 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Qifan Chen;
    Qifan Chen
    ORCID
    Harvested from ORCID Public Data File

    Qifan Chen in OpenAIRE
    orcid Siqi Bu;
    Siqi Bu
    ORCID
    Harvested from ORCID Public Data File

    Siqi Bu in OpenAIRE
    orcid bw Xin Zhang;
    Xin Zhang
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Xin Zhang in OpenAIRE
    Shijun Yi; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 2025 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 2025 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Bents, Hauke;
    Bents, Hauke
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Bents, Hauke in OpenAIRE
    orcid bw von Bremen, Lueder;
    von Bremen, Lueder
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    von Bremen, Lueder in OpenAIRE
    orcid bw Schyska, Bruno;
    Schyska, Bruno
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Schyska, Bruno in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Conference object . 2024
    IET Conference Proceedings
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Conference object . 2024
      IET Conference Proceedings
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Ben Riddell-Young;
    Ben Riddell-Young
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Ben Riddell-Young in OpenAIRE
    orcid James Edward Lee;
    James Edward Lee
    ORCID
    Harvested from ORCID Public Data File

    James Edward Lee in OpenAIRE
    orcid bw Edward J. Brook;
    Edward J. Brook
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Edward J. Brook in OpenAIRE
    orcid Jochen Schmitt;
    Jochen Schmitt
    ORCID
    Harvested from ORCID Public Data File

    Jochen Schmitt in OpenAIRE
    +5 Authors

    Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.48620/78...
    Other literature type . 2025
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    Nature
    Article . 2025
    addClaim
    1
    citations1
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.48620/78...
      Other literature type . 2025
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      Nature
      Article . 2025
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicola T. Case; orcid bw Sarah J. Gurr;
    Sarah J. Gurr
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sarah J. Gurr in OpenAIRE
    orcid Matthew C. Fisher;
    Matthew C. Fisher
    ORCID
    Harvested from ORCID Public Data File

    Matthew C. Fisher in OpenAIRE
    orcid bw David S. Blehert;
    David S. Blehert
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    David S. Blehert in OpenAIRE
    +29 Authors

    Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    Nature
    Article . 2025
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      Nature
      Article . 2025
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Parvin, Golfam; Parisa-Sadat, Ashofteh;

    The dam and hydropower plant in the Marun basin located in southwestern Iran have faced severe challenges in recent years in providing agricultural irrigation water and domestic electricity due to the adverse effects of climate change and population growth. To overcome these challenges, 11 strategies as water-energy nexus scenarios were discussed. For this purpose, first, the effects of climate change on temperature and precipitation variables were examined in three concentration pathway (RCP) RCP2.6, RCP4.5, and RCP8.5 from fifth report of International Panel on Climate Change (IPCC). Then, the inflow to the reservoir and the irrigation water required in the future time period were calculated using the artificial neural network and Cropwat models, respectively. The water system was modeled in the water evaluation and planning (WEAP) model, and the energy system was modeled in the low emissions analysis platform (LEAP) model and then coupled with each other. Considering the field situation of the Marun basin, 11 water-energy nexus (WEN) scenarios and nine nexus indexes for evaluating the scenarios were proposed by the expert group. In order to select the best scenario in the future time interval, the ordinal priority approach (OPA) decision-making method integrated with D-number theory was used. The results reveal that the maximum water-energy nexus sustainability index under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios are 31.56, 34.3, and 34.9 for the WEN4 (i.e., reducing the weeds and vegetables cultivation area by 30%), WEN7 (i.e., reduction in the grain maize and vegetables cultivation area each by 5% units and increasing forage crops cultivation area by 10% units), and WEN11 (i.e., decreasing household electricity consumption intensity by 20% throughout increasing electricity tariffs) scenarios, respectively. Also, the results of the OPA method show that the most important index in evaluating the nexus scenarios is the energy sector sustainability index with a weight of 0.142, and the best nexus scenario is the WEN7 scenario with a final weight of 0.189. The comprehensive decision-making process within the comprehensive framework of the water-energy nexus under the impact of climate change, presented in this study, can easily be adopted and applied in other river basins because of verified tools in water and energy, explicit steps, and available initial data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sayed Abdul Majid Gilani;
    Sayed Abdul Majid Gilani
    ORCID
    Harvested from ORCID Public Data File

    Sayed Abdul Majid Gilani in OpenAIRE
    orcid bw Liza Gernal;
    Liza Gernal
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Liza Gernal in OpenAIRE
    orcid Rommel Sergio;
    Rommel Sergio
    ORCID
    Harvested from ORCID Public Data File

    Rommel Sergio in OpenAIRE
    orcid Ansarullah Tantry;
    Ansarullah Tantry
    ORCID
    Harvested from ORCID Public Data File

    Ansarullah Tantry in OpenAIRE
    +2 Authors

    Broadband has revolutionized how businesses operate. Research has demonstrated the importance of broadband adoption by smaller businesses to ensure growth as they make up over 90% of all businesses worldwide. This is especially for rural-based smaller businesses as limited innovation for them may lead to social exclusion between rural and urban areas. Research has identified a lag in the take-up of broadband by rural businesses in comparison to other businesses. Investigating broadband adoption by rural businesses may inform solutions to improving the rural economy. Therefore, the purpose of this paper is to review literature related to investigating drivers and barriers to broadband adoption by rural businesses to identify solutions for improving broadband take-up amongst rural businesses. Through a systematic literature review (SLR), this paper reviews studies from 2000 to 2023. A thematic analysis identifies drivers and barriers to broadband adoption, however, size, sector, frequency of broadband adoption and level of rurality for the businesses are not clarified. The review identified limited primary research in regions like South America, the United Kingdom (UK) and Australia. Findings inform the development of a conceptual framework. Infrastructure highlighted as a barrier may inform policymakers. Findings may also inform the take-up of broadband by other businesses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    ResearchOnline@GCU
    Part of book or chapter of book . 2025
    Data sources: ResearchOnline@GCU
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      ResearchOnline@GCU
      Part of book or chapter of book . 2025
      Data sources: ResearchOnline@GCU
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph