Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
121,077 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • US
  • GB
  • DE
  • IT
  • EU

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bukoski, Jacob; Cook-Patton, Susan C.; Melikov, Cyril; Ban, Hongyi; +4 Authors

    This project systematically reviewed the literature for measurements of aboveground carbon stocks in monoculture plantation forests. The data compiled here are for monoculture (single-species) plantation forests, which are a subset of a broader review to identify empirical measurements of carbon stocks across all forest types. The database is structured similarly to that of the ForC (https://forc-db.github.io/) and GROA databases (https://github.com/forc-db/GROA). When using these data, please cite: Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Liu, J.C., Harris, N., Goldman, E., and Potts, M.D. 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications 13(4206). doi: 10.1038/s41467-022-31380-7 The code for all analyses in Bukoski et al., 2022 (paper associated with this dataset) is available at https://github.com/jbukoski/GPFC (doi: 10.5281/zenodo.6588710).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jayawardene, Iroshani; DUMITRU, ROMAN;

    We have gathered data on the power generation of seven different PV modules from three demonstration sites in Oslo, Touzer, and Sevilla for a comprehensive analysis. This data was sourced from TIGO cloud for the PV modules and Solcast, an open-source platform, for historical weather information. The data set is spanning from May 2021 to November 2023. These datasets are characterized by high-resolution recordings taken every 5 minutes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    {"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility215
    visibilityviews215
    downloaddownloads37
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Absorption Koeffizient der farbigen detritalen Substanz bei 443nm (adg in m^-1 bei 4 km Auflösung): Der Absorptionskoeffizient adg stellt den Anteil des einfallenden Lichts dar, das sowohl von detritalen Partikeln als auch von farbiger gelöster organischer Substanz (CDOM) absorbiert wird. Gelöste organische Substanz ist ein wichtiger Bestandteil des ozeanischen Kohlenstoffkreislaufs. Es wird auch als Proxy verwendet, um die Auswirkungen von Terrigenous Inputs in Küstengewässern zu bewerten. Συντελεστής απορρόφησης της χρωματισμένης αποτριχωτικής ύλης στα 443nm (adg σε m^-1 σε ανάλυση 4 km): Ο συντελεστής απορρόφησης adg αντιπροσωπεύει το κλάσμα του προσπίπτοντος φωτός που απορροφάται τόσο από τα διακριτικά σωματίδια όσο και από τη χρωματισμένη διαλυμένη οργανική ύλη (CDOM). Η διαλυμένη οργανική ύλη είναι ένα σημαντικό συστατικό του ωκεάνιου κύκλου του άνθρακα. Χρησιμοποιείται επίσης ως υποκατάστατο για την εκτίμηση των επιπτώσεων των εδαφικών εισροών στα παράκτια ύδατα. Współczynnik absorpcji barwnej substancji detrytalnej przy 443 nm (adg w m^-1 przy rozdzielczości 4 km): Współczynnik absorpcji adg reprezentuje ułamek padającego światła pochłanianego zarówno przez cząstki detrytalne, jak i przez kolorowe rozpuszczone substancje organiczne (CDOM). Rozpuszczone materia organiczna jest ważnym składnikiem oceanicznego cyklu węgla. Jest on również wykorzystywany jako wskaźnik zastępczy do oceny wpływu czynników atmosferycznych w wodach przybrzeżnych. Coeficientul de absorbție al materiei detritale colorate la 443nm (adg în m^-1 la o rezoluție de 4 km): Coeficientul de absorbție adg reprezintă fracțiunea de lumină incidentă absorbită atât de particulele detritale, cât și de materia organică colorată dizolvată (CDOM). Materia organică dizolvată este o componentă importantă a ciclului carbonului oceanic. Acesta este, de asemenea, utilizat ca indicator pentru a evalua impactul factorilor de producție terrigeni în apele costiere. Assorbiment Koeffiċjent tal-materja detritali kkulurita f’443nm (adg f’m^-1 b’riżoluzzjoni ta’ 4 km): Il-koeffiċjent ta’ assorbiment adg jirrappreżenta l-frazzjoni ta’ dawl inċidentali assorbit kemm minn partiċelli detritali kif ukoll minn materja organika maħlula kkulurita (CDOM). Il-materja organika maħlula hija komponent importanti taċ-ċiklu tal-karbonju oċeaniku. Tintuża wkoll bħala indikatur biex jiġi vvalutat l-impatt tal-inputs terriġenużi fl-ilmijiet kostali. Coefficiente di assorbimento della materia detritale colorata a 443nm (adg in m^-1 a risoluzione di 4 km): Il coefficiente di assorbimento adg rappresenta la frazione di luce incidente assorbita sia dalle particelle detritali che dalla materia organica disciolta colorata (CDOM). La materia organica disciolta è una componente importante del ciclo del carbonio oceanico. Viene anche utilizzato come proxy per valutare l'impatto degli input terrigeni nelle acque costiere. Coeficiente de absorción de materia detrital de color a 443 nm (adg en m^-1 a 4 km de resolución): El coeficiente de absorción adg representa la fracción de luz incidente absorbida tanto por partículas detritales como por materia orgánica disuelta coloreada (CDOM). La materia orgánica disuelta es un componente importante del ciclo del carbono oceánico. También se utiliza como representante para evaluar el impacto de los insumos territoriales en las aguas costeras. Коефициент на абсорбция на цветна детритална материя при 443nm (adg в m^-1 при разделителна способност 4 km): Коефициентът на поглъщане adg представлява частта от падащата светлина, абсорбирана както от детритните частици, така и от оцветената разтворена органична материя (CDOM). Разтворената органична материя е важен компонент на океанския въглероден цикъл. Той се използва и като заместител за оценка на въздействието на теригенните суровини в крайбрежните води. Coefficient d’absorption de la matière détritique colorée à 443nm (adg en m^-1 à 4 km de résolution): Le coefficient d’absorption adg représente la fraction de lumière incidente absorbée à la fois par les particules détritales et par la matière organique dissoute colorée (CDOM). La matière organique dissoute est une composante importante du cycle du carbone océanique. Il sert également de proxy pour évaluer l’impact des apports terriens dans les eaux côtières. Absorptiecoëfficiënt van gekleurde detritale materie bij 443nm (adg in m^-1 bij 4 km resolutie): De absorptiecoëfficiënt adg vertegenwoordigt de fractie van invallend licht geabsorbeerd door zowel detritale deeltjes als gekleurd opgelost organisch materiaal (CDOM). Opgelost organisch materiaal is een belangrijk onderdeel van de oceanische koolstofcyclus. Het wordt ook gebruikt als volmacht om de impact van terrigeneuze inputs in kustwateren te beoordelen.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Prada, Daniela Nieto;

    Assumptions for this work was collected and the analysis was completed in FY22. This contains information for more than 20 types of medium and heavy duty vehicles. Vehicles with various levels of hybridization, electric and fuel cell powertrains are considered in this work. More details are available in the report published by Argonne accessible from https://vms.taps.anl.gov/research-highlights/u-s-doe-vto-hfto-r-d-benefits/. TechScape, a convenient data visualization tool is also provided by Argonne for this data, accessible from [TechScape Web](https://vms.taps.anl.gov/data/techscape-web-2023/).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: de Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; +5 Authors

    CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Прозрачност на водата (коефициент на дифузно затихване при 490nm, Kd490 в m^-1 при разделителна способност 9 km): Коефициентът на дифузно затихване Kd490 измерва проникването на светлина във водния стълб при синьо-зелените дължини на вълната (приблизително 490 nm). Той представлява добър показател за прозрачността на водата в резултат на комбинираното действие на поглъщане и обратно разсейване от съставките на водата и структурата на обкръжаващото светлинно поле. Transparencia del agua (coeficiente de atenuación de difusa a 490 nm, Kd490 en m^-1 a 9 km de resolución): El coeficiente de atenuación difusa Kd490 mide la penetración de luz en la columna de agua en las longitudes de onda azul-verde (aproximadamente 490 nm). Representa un buen indicador de la transparencia del agua resultante de la acción combinada de absorción y retrodispersión por los constituyentes del agua, y la estructura del campo de luz circundante. Trasparenza tal-Ilma (koeffiċjent ta’ attenwazzjoni diffuż f’490nm, Kd490 f’m^-1 b’riżoluzzjoni ta’ 9 km): Il-koeffiċjent tal-attenwazzjoni diffuża Kd490 ikejjel il-penetrazzjoni tad-dawl fil-kolonna tal-ilma fit-tul ta’ mewġ blu-aħdar (madwar 490 nm). Dan jirrappreżenta indikatur tajjeb tat-trasparenza tal-ilma li jirriżulta mill-azzjoni kkombinata tal-assorbiment u r-retrodiffużjoni mill-kostitwenti tal-ilma, u l-istruttura tal-qasam tad-dawl tal-madwar. Trasparenza dell'acqua (coefficiente di attenuazione differenziale a 490nm, Kd490 in m^-1 a risoluzione di 9 km): Il coefficiente di attenuazione diffuso Kd490 misura la penetrazione della luce nella colonna d'acqua alle lunghezze d'onda blu-verde (ca. 490 nm). Rappresenta un buon indicatore di trasparenza dell'acqua derivante dall'azione combinata di assorbimento e retrodiffusione dai costituenti dell'acqua e dalla struttura del campo di luce circostante. Transparence de l’eau (coefficient d’atténuation diffuse à 490nm, Kd490 en m^-1 à résolution de 9 km): Le coefficient d’atténuation diffuse Kd490 mesure la pénétration de la lumière dans la colonne d’eau aux longueurs d’onde bleu-vert (environ 490 nm). Il représente un bon indicateur de transparence de l’eau résultant de l’action combinée d’absorption et de rétrodiffusion par les constituants de l’eau, et de la structure du champ lumineux environnant. Wassertransparenz (Diffuse-Dämpfungskoeffizient bei 490nm, Kd490 in m^-1 bei 9 km Auflösung): Der diffuse Dämpfungskoeffizient Kd490 misst die Lichtdurchdringung in der Wassersäule bei den blau-grünen Wellenlängen (ca. 490 nm). Es stellt einen guten Indikator für die Wassertransparenz dar, der sich aus der kombinierten Wirkung von Absorption und Rückstreuung durch die Wasserbestandteile und der Struktur des umgebenden Lichtfeldes ergibt. Transparența apei (coeficientul de atenuare a difuzării la 490nm, Kd490 în m^-1 la o rezoluție de 9 km): Coeficientul de atenuare difuză Kd490 măsoară pătrunderea luminii în coloana de apă la lungimile de undă albastru-verde (aproximativ 490 nm). Acesta reprezintă un bun indicator al transparenței apei care rezultă din acțiunea combinată de absorbție și backscattering de către constituenții de apă și structura câmpului luminos din jur. Διαφάνεια στο νερό (διάχυτος συντελεστής εξασθένησης στα 490nm, Kd490 σε m^-1 σε ανάλυση 9 km): Ο διάχυτος συντελεστής εξασθένισης Kd490 μετρά τη διείσδυση του φωτός στη στήλη νερού στα γαλαζοπράσινα μήκη κύματος (περίπου 490 nm). Αντιπροσωπεύει έναν καλό δείκτη της διαφάνειας του νερού που προκύπτει από τη συνδυασμένη δράση της απορρόφησης και της οπισθοσκέδασης από τα συστατικά του νερού, και τη δομή του γύρω φωτεινού πεδίου. Water Transparency (Diffuse attenuation coefficient at 490nm, Kd490 in m^-1 at 9km resolution): The diffuse attenuation coefficient Kd490 measures the light penetration in the water column at the blue-green wavelengths (ca. 490 nm). It represents a good indicator of water transparency resulting from the combined action of absorption and backscattering by the water constituents, and the structure of the surrounding light field. Przejrzystość wody (współczynnik tłumienia rozproszonego przy 490 nm, Kd490 w m^-1 przy rozdzielczości 9 km): Współczynnik tłumienia rozproszonego Kd490 mierzy przenikanie światła w słupie wody na niebiesko-zielonych długościach fali (ok. 490 nm). Stanowi dobry wskaźnik przejrzystości wody wynikającej z połączonego działania absorpcji i rozpraszania wstecznego przez składniki wody oraz struktury otaczającego pola światła.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Ekvivalentinės juodosios anglies matavimai Isproje, Italijoje. Măsurători ale carbonului negru echivalent în Ispra, Italia. Вимірювання еквівалентного чорного вуглецю в Іспрі, Італія. Измервания на еквивалентен черен въглерод в Испра, Италия. Merania ekvivalentného čierneho uhlíka v Ispre, Taliansko. Tomhais de charbón dubh coibhéiseach in Ispra na hIodáile. Metingen van equivalente zwarte koolstof in Ispra, Italië. Mediciones de carbono negro equivalente en Ispra, Italia. Measurements of equivalent black carbon in Ispra, Italy. Pomiary równoważnego czarnego węgla w Ispra we Włoszech.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Watson, Elizabeth; Courtney, Sofi; Montalto, Franco;

    Climate and vegetation change in a coastal marsh: two snapshots of groundwater dynamics and tidal flooding at Piermont Marsh, NY spanning 20 years We include water levels measured along a transect of groundwater wells in 1999 and 2019, statistical analyses of ground water data, tidal efficiency estimates, vegetation data from 1997, 2005, 2014, and 2018, measures of tide gauge data and sea level rise from the Battery, New York Harbor. We attach the following three groups of files: (1) Files related to data from Piermont Marsh, which includes water levels in wells, tide gauge data collected from the tidal channel, and vegetation data; (2) Files related to analysis of water levels at Piermont Marsh; (3) Files related to analysis of Battery tide gauge data, Battery tide predictions, and precipitation data ## Description of the data and file structure **(1) Files related to data from Piermont Marsh, which includes water levels in wells, tide gauge data collected from the tidal channel, and vegetation data** 1999PiermontWaterlevels.csv 2019PiermontWaterLevels.csv channel_1999.xls channel_2019.xls water_level_elevations.csv Vegetation.xls 1999PiermontWaterlevels.csv and 2019PiermontWaterLevels.csv - Water levels collected at Piermont marsh in groundwater wells, at 0-m, 6-m, 12-m, 18-m, 24-m, 36-m, and 48-m from a tidal channel. The files contain three fields: daytime, well, and elevation. The daytime is the date and time the water level was collected, hours in Eastern Daylight Time -4GMT. The well number refers to its location relative to the tidal channel, with #1 referring to 0-m, #2 referring to 6-m, #3 referring to 12-m, #4 referring to 18-m, #5 referring to 24-m, #6 referring to 36-m, and #7 referring to 48-m. The elevation field refers to the water level in meters relative to the NAVD88 datum. In 1999 water levels were collected 14 April 2019 - 26 May 2019. In 2019, water levels were collected 5 May 2019 - 30 June 2019. channel_1999.xls - This file shows the elevation of water level in the channel. There is a field for date and time, in GMT -4, and water level in meters relative to NGVD29. channel_2019.xls - This file shows the elevation of water level in the channel. There is a field for Date, Time, in GMT -4, absolute pressure in in mbar, temperature in degrees C, and water level in meters relative to NAVD88. water_level_elevations.csv - This csv file includes five fields. The first is "year" or the year collected (1999 or 2019). The second is "well" numbered 1-7. Well 1 is closest to the channel while 7 is the furthest from the channel. #1 referrs to 0-m from the channel, #2 referring to 6-m from the channel, #3 referring to 12-m from the channel, #4 referring to 18-m from the channel, #5 referring to 24-m from the channel, #6 referring to 36-m from the channel, and #7 referring to 48-m from the channel. The datetime field refers to the day and time the measure was made in day/month/year HH:MM AM/PM format. The next field is lunarcyle which refers to whether the measure was made during "spring" or "neap" tidal cycles. Spring was assigned to the tides the week of full or new moons, Neap was assigned to tides the week of the first and last quarter. The last is "elevation" and is the measure of water levels in meters relative to the NAVD88 datum. Vegetation.xls - This Excel file includes four sheets that each refer to a year of vegetation date - 1997, 2005, 2014, and 2017. The first field is "well" which has a number 1 through 7. The well number refers to its location relative to the tidal channel, with #1 referring to 0-m, #2 referring to 6-m, #3 referring to 12-m, #4 referring to 18-m, #5 referring to 24-m, #6 referring to 36-m, and #7 referring to 48-m. There is a field for latitude (lat) and longitude (long), which refers to the location of the shape in UTM, in meters, in the 18N. Cover refers to the plant cover type, area is the area of the polygon in square meters. **(2) Files related to analysis of water levels at Piermont Marsh** Distancefromsurface.R MinNeap_MarshSurface.csv MaxNeap_MarshSurface.csv MinSpring_MarshSurface.csv MaxSpring_MarshSurface.csv PiermontEfficiencyRggplot.csv Tidalefficiency.R The R file Distancefromsurface.R includes calculations of mean and variance of water levels, and as well as production of relevant figures. MinNeap_MarshSurface.csv file has low tide minimum water levels during neap tides (weeks centered on the moons first and third quarter). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at low tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MaxNeap_MarshSurface.csv file has high tide maximum water levels during neap tides (weeks centered on the moons first and third quarter). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at high tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MinSpring_MarshSurface.csv file has low tide minimum water levels during spring tides (weeks centered on the new and full moon). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at low tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MaxSpring_MarshSurface.csv file has high tide maximum water levels during spring tides (weeks centered on the new and full moon). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at high tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. PiermontEfficiencyRggplot.csv - file lists the well number (1-7), distance (a number 1-14, which gives a unique identifier to each combination of well and year), year, which was the year the data was collected. The last field is efficiency. This field refers to the ratio between the change in water level over the course of a tidal cycle in the well to the change in the water level over the course of the tidal cycle at the Battery tide gauge, NYC. Tidalefficiency.R - file that plots and calculates tidal efficiency during 1999 and 2019 at each well. **(3) Files related to analysis of Battery tide gauge data, Battery tide predictions, and precipitation data** MSL_time.R 3348871.csv 3348873.csv Battery.csv Bat_wls.csv monthly.csv sin2.csv predictions.csv tide_l.csv wls.csv MSL_time.R - This R code uses several data files to conduct analysis of change over time in water levels and monthly anomalies in precipitation and water levels. All necessary packages are described. 3348871.csv and 3348873.csv - are weather data from Westchester County airport, station USW00094745 from 1997 to 2001 (3348873.csv) 2017 to 2022 (3348871.csv). The field station lists the station. The field Name is the name of the station, Westchester County Airport. The date is the day data was collected. AWND refers to Average daily wind speed in miles per hour. PGTM refers to peak gust time (hours and minutes, i.e., HHMM). PRCP refers to precipitation in inches, TMAX refers to the maximum daily temperature, in degrees Fahrenheit. TMIN refers to the minimum daily temperature, in degrees Fahrenheit. WDF2 is the direction of fastest 2-minute wind in degrees. WDF5 is the direction of fastest 5-second wind in degrees. WSF2 is the fastest 2-minute wind speed in miles per hour. WSF5 is the fastest 5-second wind speed in miles per hour. Missing data is replaced with -999. Battery.csv - all high tide levels for 1997 through 2022. The two fields are level, referring to high tide water levels in meters relative to the NAVD88 datum. The second field is year. Bat_wls.csv is monthly tide levels from the Battery tide gauge, NY. The year field refers to year including fraction. Mean high water (MHW) refers to monthly mean high water relative to the NAVD88 datum in meters. Mean sea level (MSL) refers to monthly mean sea level relative to the NAVD88 datum in meters. Mean tide level (MTL) refers to monthly mean tide level relative to the NAVD88 datum in meters.. Mean Low Water (MLW) refers to monthly mean low water relative to the NAVD88 datum in meters. monthly.csv - is mean high water and mean sea level from 1980-2022, by month. The field month refers to the month (January =1). MHW is monthly mean high water for all months, relative to the NAVD88 datum, and MSL is monthly mean sea level relative to the NAVD88 datum. sin2.csv is the monthly mean sea level at the Battery tide gauge (1980-2022), with a 1 year rolling window median smooth added. There are three fields, month, MSL, and year. Month is the number of months elapsed since January 1961. MSL is the monthly mean sea level in meters, relative to the NAVD88 datum, with a one year smoothing function applied. Year refers to the observation month, expressed in years and the fraction of years so January 1980 would be 1980, while February 1980 is depicted as 1980.083. predictions.csv - tide predictions for the Battery tide gauge, New York City. Fields are y, which stands for year, represented by year, including fractions representing months. High_p is the highest predicted tide of the month, in meters relative to the NAVD88 datum. MHW_p is the predicted mean high tide for the month relative to the NAVD88 datum. MLW_p is the predicted mean low tide for the month relative to the NAVD88 datum. MTL_p is the predicted mean tide level for the month relative to the NAVD88 datum. High_1 is the highest actual tide of the month, in meters relative to the NAVD88 datum. MHW_a is the actual mean high tide for the month relative to the NAVD88 datum. MLW_a is the actual mean low tide for the month relative to the NAVD88 datum. MTL_a is the actual mean tide level for the month relative to the NAVD88 datum. tide_l.csv is a file with the monthly mean high water (MHW_l), monthly mean tide level (MTL_l), and mean low water (MLW_l) for 1960 -2021. wls.csv is a file that has monthly water levels from 1999 to 2019, listing year (as a fraction, not just an integer for month), Highest, as the highest tide of the month in meters relative to the NAVD88 datum. MHW refers to the mean high water during the month in meters relative to the NAVD88 datum. MTL refers to the mean tidal level during the month in meters relative to the NAVD88 datum. MLW refers to the mean low water during the month in meters relative to the NAVD88 datum. ## Sharing/Access information Data was derived from the following external sources: * Vegetation shapefiles for the Hudson River NERR for 1997, 2005, and 2014, were obtained through personal request to Sarah Fernald, *Reserve Manager and Research Coordinator.* Files should be available through the Reserve website, although the link is not functional at this time: * The 2018 vegetation shapefiles were obtained from under the heading, [Hudson River Estuary tidal wetlands](https://data.gis.ny.gov/datasets/ee2723393f894e929dbd6dbdc84770de_0/explore?location=41.308770%2C-73.842410%2C9.10). * We acknowledge the NYS DEC Hudson River Estuary Program, NYS DEC Hudson River National Estuarine Research Reserve, and Cornell Institute for Resource Information Sciences for collection and curation of the Hudson River NERR vegetation data. * Tide gauge data and tide predictions for the Battery, NY were obtained from NOAA tides and currents website: * Precipitation data was obtained from the National Centers for Environmental Information, NOAA: . The station for which data was obtained was the Westchester County airport, station USW00094745. ## Code/Software We provide three R files, which we ran using R version 4.3.1 (2023-06-16), in R Studio 2022.02.1, Build 461. All required packages are described in the .R files. Distancefromsurface.R - This R code utilizes four data files that include low tides during spring tides, low tides during neap tides, high tides during spring tides, and high tides during neap files to compare average and variance in low and high tide water levels during 1999 and 2019 relative to the marsh surface and relative to the NAVD88 datum. Code is also included to produce plots. Tidalefficiency.R - file that plots and calculates tidal efficiency during 1999 and 2019 at each well. MSL_time.R - This R code uses several data files to conduct analysis of change over time in water levels and monthly anomalies in precipitation and water levels. Hydrological measurements were collected during the spring and summer of 1999 and 2019 in Piermont Marsh (coordinates 41.0361°, -73.9105°). These measurements covered a transect that was laid out perpendicular to a tidal channel. The objective of this study was to compare the current tidal flooding and groundwater table levels with the data from 1999. The goal was to assess the differences in tidal hydrology between these two distinct time periods, which also differed in terms of marsh and water level elevations. To determine groundwater levels and tidal flooding across the marsh, we installed seven water level loggers along a gradient, ranging from the tidal channel to the upland area. We constructed wells by suspending pressure transducers within 7.5 cm diameter perforated PVC pipes lined with screening to prevent sediment from entering the well. These wells were positioned one meter below the marsh surface, 0.6 meters above the soil surface, vented to the atmosphere, and only the section below the soil surface was perforated. Additionally, we installed concrete collars at the marsh surface around the wells to prevent preferential water flow down the well sides. These seven wells were placed along the original transect, perpendicular to the creek, with increasing distances (0 meters, 6 meters, 12 meters, 18 meters, 24 meters, 36 meters, and 48 meters). We installed and monitored the wells from May 5 to June 30, 2019, and from April 6 to May 26, 1999. In 2019, we measured the absolute elevation of the top of each well using RTK-enabled static GPS measurements from Leica GNSS GS14 rover units and static measurements with an AX1202 GG base station unit to reference water levels to the NAVD88 vertical datum. We measured reference water levels each time data was collected, which involved determining the distance from the top of the well to the water surface and converting it to elevation relative to the NAVD88 datum. To relate marsh elevation to water elevations, GPS surveys were conducted along the transect using a Leica GNSS GS14 rover unit. In 1999, elevation control for the wells and water levels was similarly measured using survey-grade GPS. We compared changes in the marsh water table with significant potential hydrological and vegetation changes that have occurred over the past 20 years. We calculated the rates of change in monthly water levels at Battery, NY for the period from 1999 to 2019 using two different methods. We modeled changes over time in monthly highest water levels, mean high water (MHW), mean tide level (MTL), and mean low water (MLW) using an ordinary least squares regression model with ARIMA errors to account for the autoregressive structure of tide data. We removed the annual cycle first using a curve with a 1-year periodicity. The ARIMA errors model was fitted using the "auto.arima" function from the "forecast" package. We calculated the squared correlation of fitted values to actual values to produce a pseudo-r2. For comparison, we calculated trends using ordinary least squares regression for the 1999-2019 period, although it's important to note that the temporal autocorrelation likely results in underestimated uncertainty. We obtained vegetation maps from the HRNERR for 1997, 2005, 2014, and 2018 to help assess changes in the coverage of plant species over time, as these changes could impact evapotranspiration and water table patterns. A 20-meter buffer zone was created around each well location, and the composition of vegetation within this buffer zone was quantified using QGIS version 3.30.2. While four time-points may not be sufficient for statistically identifying trends, we analyzed the changes observed. To put the measurement time periods in context and ensure that our selected seasons were not anomalous, we compared water levels in spring 1999 and 2019 relative to the astronomical cycles driving interannual sea level variability using data from the Battery tide gauge. We also compared spring high tide levels in 1999 and 2019 with surrounding years. The main astronomical cycles thought to influence tides include the 18.6-year lunar nodal cycle and the 4.4-year subharmonic of the 8.85-year lunar perigee cycle. As our 1999 and 2019 measurements were collected during slightly different time periods (April/May 1999 vs. May/June 2019), we also examined mean monthly water levels (1980-2022) from the NOAA Battery tidal gauge to identify potential artifacts. We obtained rainfall data from spring 1999 and 2019 from the nearest precipitation monitoring station (Westchester airport) to determine whether the measurements were made during an unusually wet or dry period. The sampling periods were 20 years apart, so they occurred at approximately the same point in the 18.6-year lunar nodal cycle. Pressure transducer data was processed using HOBOware Pro (Version 3.7.16, Onset Computer Corporation, Bourne, MA) with reference water levels collected in the field. The data were corrected for atmospheric pressure using the HOBOware barometric compensation assistant, using data from the Hudson River National Estuarine Research Reserve. Raw water elevation data from 1999 was analyzed in conjunction with the 2019 data. Water level data from 1999 were converted from the NVGD29 to NAVD 88 datum using NOAA VDatum v4.0.1 prior to analysis. Well seven's transducer experienced three brief malfunctions from May 30 to June 3, 2019, resulting in inaccurate elevation measurements for a total of 19.5 hours. These data were excluded from the analysis. In 1999, well seven also experienced malfunctions, which were corrected by Montalto into smoothed six-hour increments using average water elevation measurements and calculated error, calibrated using regression. No other well transducers appeared to have malfunctioned. Groundwater hydrology plays an important role in coastal marsh biogeochemical function, in part because groundwater dynamics drive the zonation of macrophyte community distribution. Changes that occur over time, such as sea level rise and shifts in habitat structure are likely altering groundwater dynamics and eco-hydrological zonation. We examined tidal flooding and marsh water table dynamics in 1999 and 2019 and mapped shifts in plant distributions over time, at Piermont Marsh, a brackish tidal marsh located along the Hudson River Estuary near New York City. We found evidence that the marsh surface was flooded more frequently in 2019 than in 1999, and that tides were propagating further into the marsh in 2019, although marsh surface elevation gains were largely matching that of sea level rise. The changes in groundwater hydrology that we observed are likely due to the high tide rising at a rate that is greater than that of mean sea level. In addition, we reported on changes in plant cover by P. australis, which has displaced native marsh vegetation at Piermont Marsh. Although P. australis has increased in cover, wrack deposition and plant die off associated Superstorm Sandy allowed for native vegetation to rebound in part of our focus area. These results suggest that climate change and plant community composition may interact to shape ecohydrologic zonation. Considering these results, we recommend that habitat models consider tidal range expansion and groundwater hydrology as metrics when predicting the impact of sea level rise on marsh resilience.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
121,077 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bukoski, Jacob; Cook-Patton, Susan C.; Melikov, Cyril; Ban, Hongyi; +4 Authors

    This project systematically reviewed the literature for measurements of aboveground carbon stocks in monoculture plantation forests. The data compiled here are for monoculture (single-species) plantation forests, which are a subset of a broader review to identify empirical measurements of carbon stocks across all forest types. The database is structured similarly to that of the ForC (https://forc-db.github.io/) and GROA databases (https://github.com/forc-db/GROA). When using these data, please cite: Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Liu, J.C., Harris, N., Goldman, E., and Potts, M.D. 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications 13(4206). doi: 10.1038/s41467-022-31380-7 The code for all analyses in Bukoski et al., 2022 (paper associated with this dataset) is available at https://github.com/jbukoski/GPFC (doi: 10.5281/zenodo.6588710).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jayawardene, Iroshani; DUMITRU, ROMAN;

    We have gathered data on the power generation of seven different PV modules from three demonstration sites in Oslo, Touzer, and Sevilla for a comprehensive analysis. This data was sourced from TIGO cloud for the PV modules and Solcast, an open-source platform, for historical weather information. The data set is spanning from May 2021 to November 2023. These datasets are characterized by high-resolution recordings taken every 5 minutes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    {"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility215
    visibilityviews215
    downloaddownloads37
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Absorption Koeffizient der farbigen detritalen Substanz bei 443nm (adg in m^-1 bei 4 km Auflösung): Der Absorptionskoeffizient adg stellt den Anteil des einfallenden Lichts dar, das sowohl von detritalen Partikeln als auch von farbiger gelöster organischer Substanz (CDOM) absorbiert wird. Gelöste organische Substanz ist ein wichtiger Bestandteil des ozeanischen Kohlenstoffkreislaufs. Es wird auch als Proxy verwendet, um die Auswirkungen von Terrigenous Inputs in Küstengewässern zu bewerten. Συντελεστής απορρόφησης της χρωματισμένης αποτριχωτικής ύλης στα 443nm (adg σε m^-1 σε ανάλυση 4 km): Ο συντελεστής απορρόφησης adg αντιπροσωπεύει το κλάσμα του προσπίπτοντος φωτός που απορροφάται τόσο από τα διακριτικά σωματίδια όσο και από τη χρωματισμένη διαλυμένη οργανική ύλη (CDOM). Η διαλυμένη οργανική ύλη είναι ένα σημαντικό συστατικό του ωκεάνιου κύκλου του άνθρακα. Χρησιμοποιείται επίσης ως υποκατάστατο για την εκτίμηση των επιπτώσεων των εδαφικών εισροών στα παράκτια ύδατα. Współczynnik absorpcji barwnej substancji detrytalnej przy 443 nm (adg w m^-1 przy rozdzielczości 4 km): Współczynnik absorpcji adg reprezentuje ułamek padającego światła pochłanianego zarówno przez cząstki detrytalne, jak i przez kolorowe rozpuszczone substancje organiczne (CDOM). Rozpuszczone materia organiczna jest ważnym składnikiem oceanicznego cyklu węgla. Jest on również wykorzystywany jako wskaźnik zastępczy do oceny wpływu czynników atmosferycznych w wodach przybrzeżnych. Coeficientul de absorbție al materiei detritale colorate la 443nm (adg în m^-1 la o rezoluție de 4 km): Coeficientul de absorbție adg reprezintă fracțiunea de lumină incidentă absorbită atât de particulele detritale, cât și de materia organică colorată dizolvată (CDOM). Materia organică dizolvată este o componentă importantă a ciclului carbonului oceanic. Acesta este, de asemenea, utilizat ca indicator pentru a evalua impactul factorilor de producție terrigeni în apele costiere. Assorbiment Koeffiċjent tal-materja detritali kkulurita f’443nm (adg f’m^-1 b’riżoluzzjoni ta’ 4 km): Il-koeffiċjent ta’ assorbiment adg jirrappreżenta l-frazzjoni ta’ dawl inċidentali assorbit kemm minn partiċelli detritali kif ukoll minn materja organika maħlula kkulurita (CDOM). Il-materja organika maħlula hija komponent importanti taċ-ċiklu tal-karbonju oċeaniku. Tintuża wkoll bħala indikatur biex jiġi vvalutat l-impatt tal-inputs terriġenużi fl-ilmijiet kostali. Coefficiente di assorbimento della materia detritale colorata a 443nm (adg in m^-1 a risoluzione di 4 km): Il coefficiente di assorbimento adg rappresenta la frazione di luce incidente assorbita sia dalle particelle detritali che dalla materia organica disciolta colorata (CDOM). La materia organica disciolta è una componente importante del ciclo del carbonio oceanico. Viene anche utilizzato come proxy per valutare l'impatto degli input terrigeni nelle acque costiere. Coeficiente de absorción de materia detrital de color a 443 nm (adg en m^-1 a 4 km de resolución): El coeficiente de absorción adg representa la fracción de luz incidente absorbida tanto por partículas detritales como por materia orgánica disuelta coloreada (CDOM). La materia orgánica disuelta es un componente importante del ciclo del carbono oceánico. También se utiliza como representante para evaluar el impacto de los insumos territoriales en las aguas costeras. Коефициент на абсорбция на цветна детритална материя при 443nm (adg в m^-1 при разделителна способност 4 km): Коефициентът на поглъщане adg представлява частта от падащата светлина, абсорбирана както от детритните частици, така и от оцветената разтворена органична материя (CDOM). Разтворената органична материя е важен компонент на океанския въглероден цикъл. Той се използва и като заместител за оценка на въздействието на теригенните суровини в крайбрежните води. Coefficient d’absorption de la matière détritique colorée à 443nm (adg en m^-1 à 4 km de résolution): Le coefficient d’absorption adg représente la fraction de lumière incidente absorbée à la fois par les particules détritales et par la matière organique dissoute colorée (CDOM). La matière organique dissoute est une composante importante du cycle du carbone océanique. Il sert également de proxy pour évaluer l’impact des apports terriens dans les eaux côtières. Absorptiecoëfficiënt van gekleurde detritale materie bij 443nm (adg in m^-1 bij 4 km resolutie): De absorptiecoëfficiënt adg vertegenwoordigt de fractie van invallend licht geabsorbeerd door zowel detritale deeltjes als gekleurd opgelost organisch materiaal (CDOM). Opgelost organisch materiaal is een belangrijk onderdeel van de oceanische koolstofcyclus. Het wordt ook gebruikt als volmacht om de impact van terrigeneuze inputs in kustwateren te beoordelen.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Prada, Daniela Nieto;

    Assumptions for this work was collected and the analysis was completed in FY22. This contains information for more than 20 types of medium and heavy duty vehicles. Vehicles with various levels of hybridization, electric and fuel cell powertrains are considered in this work. More details are available in the report published by Argonne accessible from https://vms.taps.anl.gov/research-highlights/u-s-doe-vto-hfto-r-d-benefits/. TechScape, a convenient data visualization tool is also provided by Argonne for this data, accessible from [TechScape Web](https://vms.taps.anl.gov/data/techscape-web-2023/).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The HANZE dataset covers riverine, pluvial, coastal and compound floods that have occurred in 42 European countries. It contains: 2521 historical floods with impact data (1870-2020); 237 further historical floods with significant impacts, but without precise impact data (1950-2020) Nearly 15,000 modelled floods with a potential to cause significant impacts, classified by actual historical occurrence or non-occurrence impacts (1950-2020). Historical floods and the classification of modelled floods was completed by extensive data-collection from more than 900 sources ranging from news reports through government databases to scientific papers. Impact data collected or modelled include area inundated, fatalities, persons affected or economic loss. Economic losses were inflation- and exchange-rate adjusted to 2020 value of the euro. The historical catalogue (lsit A) also includes losses in the original currencies and price levels. The spatial footprint of affected areas is consistently recorded using more than 1400 subnational units corresponding, with minor exceptions, to the European Union’s Nomenclature of Territorial Units for Statistics (NUTS), level 3. Apart from the possibility to download the data, the database can be viewed, filtered and visualized online: https://naturalhazards.eu. The dataset contains the following files (CSV comma-delimited, UTF8, and ESRI shapefiles in zipped folders): HANZE_historical_floods_catalogue_listA.csv - historical floods with impact data (1870-2020) HANZE_historical_floods_catalogue_listB.csv - historical floods without impact data (1950-2020) HANZE_potential_flood_catalogue_all.csv - modelled potential floods (1950-2020) HANZE_list_of_references.csv - List of all references used in the catalogues HANZE_model_completness_analysis.csv - Comparison between modelled and reported footprints of historical floods Regions_v2010_simplified.zip - Map of subnational regions (v2010) Regions_v2021_simplified.zip - Map of subnational regions (regions v2021) v1.1: errors in two records in "HANZE_historical_floods_catalogue_listB.csv" (wrong country code in event ID 8227 and wrong start date in event ID 8237) were corrected. This work was supported by the German Research Foundation (DFG) through project "Decomposition of flood losses by environmental and economic drivers" (FloodDrivers), project no. 449175973 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: de Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; +5 Authors

    CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Прозрачност на водата (коефициент на дифузно затихване при 490nm, Kd490 в m^-1 при разделителна способност 9 km): Коефициентът на дифузно затихване Kd490 измерва проникването на светлина във водния стълб при синьо-зелените дължини на вълната (приблизително 490 nm). Той представлява добър показател за прозрачността на водата в резултат на комбинираното действие на поглъщане и обратно разсейване от съставките на водата и структурата на обкръжаващото светлинно поле. Transparencia del agua (coeficiente de atenuación de difusa a 490 nm, Kd490 en m^-1 a 9 km de resolución): El coeficiente de atenuación difusa Kd490 mide la penetración de luz en la columna de agua en las longitudes de onda azul-verde (aproximadamente 490 nm). Representa un buen indicador de la transparencia del agua resultante de la acción combinada de absorción y retrodispersión por los constituyentes del agua, y la estructura del campo de luz circundante. Trasparenza tal-Ilma (koeffiċjent ta’ attenwazzjoni diffuż f’490nm, Kd490 f’m^-1 b’riżoluzzjoni ta’ 9 km): Il-koeffiċjent tal-attenwazzjoni diffuża Kd490 ikejjel il-penetrazzjoni tad-dawl fil-kolonna tal-ilma fit-tul ta’ mewġ blu-aħdar (madwar 490 nm). Dan jirrappreżenta indikatur tajjeb tat-trasparenza tal-ilma li jirriżulta mill-azzjoni kkombinata tal-assorbiment u r-retrodiffużjoni mill-kostitwenti tal-ilma, u l-istruttura tal-qasam tad-dawl tal-madwar. Trasparenza dell'acqua (coefficiente di attenuazione differenziale a 490nm, Kd490 in m^-1 a risoluzione di 9 km): Il coefficiente di attenuazione diffuso Kd490 misura la penetrazione della luce nella colonna d'acqua alle lunghezze d'onda blu-verde (ca. 490 nm). Rappresenta un buon indicatore di trasparenza dell'acqua derivante dall'azione combinata di assorbimento e retrodiffusione dai costituenti dell'acqua e dalla struttura del campo di luce circostante. Transparence de l’eau (coefficient d’atténuation diffuse à 490nm, Kd490 en m^-1 à résolution de 9 km): Le coefficient d’atténuation diffuse Kd490 mesure la pénétration de la lumière dans la colonne d’eau aux longueurs d’onde bleu-vert (environ 490 nm). Il représente un bon indicateur de transparence de l’eau résultant de l’action combinée d’absorption et de rétrodiffusion par les constituants de l’eau, et de la structure du champ lumineux environnant. Wassertransparenz (Diffuse-Dämpfungskoeffizient bei 490nm, Kd490 in m^-1 bei 9 km Auflösung): Der diffuse Dämpfungskoeffizient Kd490 misst die Lichtdurchdringung in der Wassersäule bei den blau-grünen Wellenlängen (ca. 490 nm). Es stellt einen guten Indikator für die Wassertransparenz dar, der sich aus der kombinierten Wirkung von Absorption und Rückstreuung durch die Wasserbestandteile und der Struktur des umgebenden Lichtfeldes ergibt. Transparența apei (coeficientul de atenuare a difuzării la 490nm, Kd490 în m^-1 la o rezoluție de 9 km): Coeficientul de atenuare difuză Kd490 măsoară pătrunderea luminii în coloana de apă la lungimile de undă albastru-verde (aproximativ 490 nm). Acesta reprezintă un bun indicator al transparenței apei care rezultă din acțiunea combinată de absorbție și backscattering de către constituenții de apă și structura câmpului luminos din jur. Διαφάνεια στο νερό (διάχυτος συντελεστής εξασθένησης στα 490nm, Kd490 σε m^-1 σε ανάλυση 9 km): Ο διάχυτος συντελεστής εξασθένισης Kd490 μετρά τη διείσδυση του φωτός στη στήλη νερού στα γαλαζοπράσινα μήκη κύματος (περίπου 490 nm). Αντιπροσωπεύει έναν καλό δείκτη της διαφάνειας του νερού που προκύπτει από τη συνδυασμένη δράση της απορρόφησης και της οπισθοσκέδασης από τα συστατικά του νερού, και τη δομή του γύρω φωτεινού πεδίου. Water Transparency (Diffuse attenuation coefficient at 490nm, Kd490 in m^-1 at 9km resolution): The diffuse attenuation coefficient Kd490 measures the light penetration in the water column at the blue-green wavelengths (ca. 490 nm). It represents a good indicator of water transparency resulting from the combined action of absorption and backscattering by the water constituents, and the structure of the surrounding light field. Przejrzystość wody (współczynnik tłumienia rozproszonego przy 490 nm, Kd490 w m^-1 przy rozdzielczości 9 km): Współczynnik tłumienia rozproszonego Kd490 mierzy przenikanie światła w słupie wody na niebiesko-zielonych długościach fali (ok. 490 nm). Stanowi dobry wskaźnik przejrzystości wody wynikającej z połączonego działania absorpcji i rozpraszania wstecznego przez składniki wody oraz struktury otaczającego pola światła.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Ekvivalentinės juodosios anglies matavimai Isproje, Italijoje. Măsurători ale carbonului negru echivalent în Ispra, Italia. Вимірювання еквівалентного чорного вуглецю в Іспрі, Італія. Измервания на еквивалентен черен въглерод в Испра, Италия. Merania ekvivalentného čierneho uhlíka v Ispre, Taliansko. Tomhais de charbón dubh coibhéiseach in Ispra na hIodáile. Metingen van equivalente zwarte koolstof in Ispra, Italië. Mediciones de carbono negro equivalente en Ispra, Italia. Measurements of equivalent black carbon in Ispra, Italy. Pomiary równoważnego czarnego węgla w Ispra we Włoszech.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Union Open ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Watson, Elizabeth; Courtney, Sofi; Montalto, Franco;

    Climate and vegetation change in a coastal marsh: two snapshots of groundwater dynamics and tidal flooding at Piermont Marsh, NY spanning 20 years We include water levels measured along a transect of groundwater wells in 1999 and 2019, statistical analyses of ground water data, tidal efficiency estimates, vegetation data from 1997, 2005, 2014, and 2018, measures of tide gauge data and sea level rise from the Battery, New York Harbor. We attach the following three groups of files: (1) Files related to data from Piermont Marsh, which includes water levels in wells, tide gauge data collected from the tidal channel, and vegetation data; (2) Files related to analysis of water levels at Piermont Marsh; (3) Files related to analysis of Battery tide gauge data, Battery tide predictions, and precipitation data ## Description of the data and file structure **(1) Files related to data from Piermont Marsh, which includes water levels in wells, tide gauge data collected from the tidal channel, and vegetation data** 1999PiermontWaterlevels.csv 2019PiermontWaterLevels.csv channel_1999.xls channel_2019.xls water_level_elevations.csv Vegetation.xls 1999PiermontWaterlevels.csv and 2019PiermontWaterLevels.csv - Water levels collected at Piermont marsh in groundwater wells, at 0-m, 6-m, 12-m, 18-m, 24-m, 36-m, and 48-m from a tidal channel. The files contain three fields: daytime, well, and elevation. The daytime is the date and time the water level was collected, hours in Eastern Daylight Time -4GMT. The well number refers to its location relative to the tidal channel, with #1 referring to 0-m, #2 referring to 6-m, #3 referring to 12-m, #4 referring to 18-m, #5 referring to 24-m, #6 referring to 36-m, and #7 referring to 48-m. The elevation field refers to the water level in meters relative to the NAVD88 datum. In 1999 water levels were collected 14 April 2019 - 26 May 2019. In 2019, water levels were collected 5 May 2019 - 30 June 2019. channel_1999.xls - This file shows the elevation of water level in the channel. There is a field for date and time, in GMT -4, and water level in meters relative to NGVD29. channel_2019.xls - This file shows the elevation of water level in the channel. There is a field for Date, Time, in GMT -4, absolute pressure in in mbar, temperature in degrees C, and water level in meters relative to NAVD88. water_level_elevations.csv - This csv file includes five fields. The first is "year" or the year collected (1999 or 2019). The second is "well" numbered 1-7. Well 1 is closest to the channel while 7 is the furthest from the channel. #1 referrs to 0-m from the channel, #2 referring to 6-m from the channel, #3 referring to 12-m from the channel, #4 referring to 18-m from the channel, #5 referring to 24-m from the channel, #6 referring to 36-m from the channel, and #7 referring to 48-m from the channel. The datetime field refers to the day and time the measure was made in day/month/year HH:MM AM/PM format. The next field is lunarcyle which refers to whether the measure was made during "spring" or "neap" tidal cycles. Spring was assigned to the tides the week of full or new moons, Neap was assigned to tides the week of the first and last quarter. The last is "elevation" and is the measure of water levels in meters relative to the NAVD88 datum. Vegetation.xls - This Excel file includes four sheets that each refer to a year of vegetation date - 1997, 2005, 2014, and 2017. The first field is "well" which has a number 1 through 7. The well number refers to its location relative to the tidal channel, with #1 referring to 0-m, #2 referring to 6-m, #3 referring to 12-m, #4 referring to 18-m, #5 referring to 24-m, #6 referring to 36-m, and #7 referring to 48-m. There is a field for latitude (lat) and longitude (long), which refers to the location of the shape in UTM, in meters, in the 18N. Cover refers to the plant cover type, area is the area of the polygon in square meters. **(2) Files related to analysis of water levels at Piermont Marsh** Distancefromsurface.R MinNeap_MarshSurface.csv MaxNeap_MarshSurface.csv MinSpring_MarshSurface.csv MaxSpring_MarshSurface.csv PiermontEfficiencyRggplot.csv Tidalefficiency.R The R file Distancefromsurface.R includes calculations of mean and variance of water levels, and as well as production of relevant figures. MinNeap_MarshSurface.csv file has low tide minimum water levels during neap tides (weeks centered on the moons first and third quarter). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at low tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MaxNeap_MarshSurface.csv file has high tide maximum water levels during neap tides (weeks centered on the moons first and third quarter). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at high tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MinSpring_MarshSurface.csv file has low tide minimum water levels during spring tides (weeks centered on the new and full moon). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at low tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. MaxSpring_MarshSurface.csv file has high tide maximum water levels during spring tides (weeks centered on the new and full moon). It includes the following fields: distance, year, water_elevation, marsh_elevation, and distance_surface. The field distance, is distance from the tidal channel, in meters. The field year, refers to is the year collected (1999 or 2019). The field water_elevation, is the elevation of the water level at high tide, in meters relative to the NGVD88 datum. The field marsh_elevation refers to the height of the marsh at that location, in meters relative to the NGVD88 datum. The field distance_surface is the difference between the marsh elevation and the water elevation. Positive values are values below the marsh surface, while negative values are values above the marsh surface. PiermontEfficiencyRggplot.csv - file lists the well number (1-7), distance (a number 1-14, which gives a unique identifier to each combination of well and year), year, which was the year the data was collected. The last field is efficiency. This field refers to the ratio between the change in water level over the course of a tidal cycle in the well to the change in the water level over the course of the tidal cycle at the Battery tide gauge, NYC. Tidalefficiency.R - file that plots and calculates tidal efficiency during 1999 and 2019 at each well. **(3) Files related to analysis of Battery tide gauge data, Battery tide predictions, and precipitation data** MSL_time.R 3348871.csv 3348873.csv Battery.csv Bat_wls.csv monthly.csv sin2.csv predictions.csv tide_l.csv wls.csv MSL_time.R - This R code uses several data files to conduct analysis of change over time in water levels and monthly anomalies in precipitation and water levels. All necessary packages are described. 3348871.csv and 3348873.csv - are weather data from Westchester County airport, station USW00094745 from 1997 to 2001 (3348873.csv) 2017 to 2022 (3348871.csv). The field station lists the station. The field Name is the name of the station, Westchester County Airport. The date is the day data was collected. AWND refers to Average daily wind speed in miles per hour. PGTM refers to peak gust time (hours and minutes, i.e., HHMM). PRCP refers to precipitation in inches, TMAX refers to the maximum daily temperature, in degrees Fahrenheit. TMIN refers to the minimum daily temperature, in degrees Fahrenheit. WDF2 is the direction of fastest 2-minute wind in degrees. WDF5 is the direction of fastest 5-second wind in degrees. WSF2 is the fastest 2-minute wind speed in miles per hour. WSF5 is the fastest 5-second wind speed in miles per hour. Missing data is replaced with -999. Battery.csv - all high tide levels for 1997 through 2022. The two fields are level, referring to high tide water levels in meters relative to the NAVD88 datum. The second field is year. Bat_wls.csv is monthly tide levels from the Battery tide gauge, NY. The year field refers to year including fraction. Mean high water (MHW) refers to monthly mean high water relative to the NAVD88 datum in meters. Mean sea level (MSL) refers to monthly mean sea level relative to the NAVD88 datum in meters. Mean tide level (MTL) refers to monthly mean tide level relative to the NAVD88 datum in meters.. Mean Low Water (MLW) refers to monthly mean low water relative to the NAVD88 datum in meters. monthly.csv - is mean high water and mean sea level from 1980-2022, by month. The field month refers to the month (January =1). MHW is monthly mean high water for all months, relative to the NAVD88 datum, and MSL is monthly mean sea level relative to the NAVD88 datum. sin2.csv is the monthly mean sea level at the Battery tide gauge (1980-2022), with a 1 year rolling window median smooth added. There are three fields, month, MSL, and year. Month is the number of months elapsed since January 1961. MSL is the monthly mean sea level in meters, relative to the NAVD88 datum, with a one year smoothing function applied. Year refers to the observation month, expressed in years and the fraction of years so January 1980 would be 1980, while February 1980 is depicted as 1980.083. predictions.csv - tide predictions for the Battery tide gauge, New York City. Fields are y, which stands for year, represented by year, including fractions representing months. High_p is the highest predicted tide of the month, in meters relative to the NAVD88 datum. MHW_p is the predicted mean high tide for the month relative to the NAVD88 datum. MLW_p is the predicted mean low tide for the month relative to the NAVD88 datum. MTL_p is the predicted mean tide level for the month relative to the NAVD88 datum. High_1 is the highest actual tide of the month, in meters relative to the NAVD88 datum. MHW_a is the actual mean high tide for the month relative to the NAVD88 datum. MLW_a is the actual mean low tide for the month relative to the NAVD88 datum. MTL_a is the actual mean tide level for the month relative to the NAVD88 datum. tide_l.csv is a file with the monthly mean high water (MHW_l), monthly mean tide level (MTL_l), and mean low water (MLW_l) for 1960 -2021. wls.csv is a file that has monthly water levels from 1999 to 2019, listing year (as a fraction, not just an integer for month), Highest, as the highest tide of the month in meters relative to the NAVD88 datum. MHW refers to the mean high water during the month in meters relative to the NAVD88 datum. MTL refers to the mean tidal level during the month in meters relative to the NAVD88 datum. MLW refers to the mean low water during the month in meters relative to the NAVD88 datum. ## Sharing/Access information Data was derived from the following external sources: * Vegetation shapefiles for the Hudson River NERR for 1997, 2005, and 2014, were obtained through personal request to Sarah Fernald, *Reserve Manager and Research Coordinator.* Files should be available through the Reserve website, although the link is not functional at this time: * The 2018 vegetation shapefiles were obtained from under the heading, [Hudson River Estuary tidal wetlands](https://data.gis.ny.gov/datasets/ee2723393f894e929dbd6dbdc84770de_0/explore?location=41.308770%2C-73.842410%2C9.10). * We acknowledge the NYS DEC Hudson River Estuary Program, NYS DEC Hudson River National Estuarine Research Reserve, and Cornell Institute for Resource Information Sciences for collection and curation of the Hudson River NERR vegetation data. * Tide gauge data and tide predictions for the Battery, NY were obtained from NOAA tides and currents website: * Precipitation data was obtained from the National Centers for Environmental Information, NOAA: . The station for which data was obtained was the Westchester County airport, station USW00094745. ## Code/Software We provide three R files, which we ran using R version 4.3.1 (2023-06-16), in R Studio 2022.02.1, Build 461. All required packages are described in the .R files. Distancefromsurface.R - This R code utilizes four data files that include low tides during spring tides, low tides during neap tides, high tides during spring tides, and high tides during neap files to compare average and variance in low and high tide water levels during 1999 and 2019 relative to the marsh surface and relative to the NAVD88 datum. Code is also included to produce plots. Tidalefficiency.R - file that plots and calculates tidal efficiency during 1999 and 2019 at each well. MSL_time.R - This R code uses several data files to conduct analysis of change over time in water levels and monthly anomalies in precipitation and water levels. Hydrological measurements were collected during the spring and summer of 1999 and 2019 in Piermont Marsh (coordinates 41.0361°, -73.9105°). These measurements covered a transect that was laid out perpendicular to a tidal channel. The objective of this study was to compare the current tidal flooding and groundwater table levels with the data from 1999. The goal was to assess the differences in tidal hydrology between these two distinct time periods, which also differed in terms of marsh and water level elevations. To determine groundwater levels and tidal flooding across the marsh, we installed seven water level loggers along a gradient, ranging from the tidal channel to the upland area. We constructed wells by suspending pressure transducers within 7.5 cm diameter perforated PVC pipes lined with screening to prevent sediment from entering the well. These wells were positioned one meter below the marsh surface, 0.6 meters above the soil surface, vented to the atmosphere, and only the section below the soil surface was perforated. Additionally, we installed concrete collars at the marsh surface around the wells to prevent preferential water flow down the well sides. These seven wells were placed along the original transect, perpendicular to the creek, with increasing distances (0 meters, 6 meters, 12 meters, 18 meters, 24 meters, 36 meters, and 48 meters). We installed and monitored the wells from May 5 to June 30, 2019, and from April 6 to May 26, 1999. In 2019, we measured the absolute elevation of the top of each well using RTK-enabled static GPS measurements from Leica GNSS GS14 rover units and static measurements with an AX1202 GG base station unit to reference water levels to the NAVD88 vertical datum. We measured reference water levels each time data was collected, which involved determining the distance from the top of the well to the water surface and converting it to elevation relative to the NAVD88 datum. To relate marsh elevation to water elevations, GPS surveys were conducted along the transect using a Leica GNSS GS14 rover unit. In 1999, elevation control for the wells and water levels was similarly measured using survey-grade GPS. We compared changes in the marsh water table with significant potential hydrological and vegetation changes that have occurred over the past 20 years. We calculated the rates of change in monthly water levels at Battery, NY for the period from 1999 to 2019 using two different methods. We modeled changes over time in monthly highest water levels, mean high water (MHW), mean tide level (MTL), and mean low water (MLW) using an ordinary least squares regression model with ARIMA errors to account for the autoregressive structure of tide data. We removed the annual cycle first using a curve with a 1-year periodicity. The ARIMA errors model was fitted using the "auto.arima" function from the "forecast" package. We calculated the squared correlation of fitted values to actual values to produce a pseudo-r2. For comparison, we calculated trends using ordinary least squares regression for the 1999-2019 period, although it's important to note that the temporal autocorrelation likely results in underestimated uncertainty. We obtained vegetation maps from the HRNERR for 1997, 2005, 2014, and 2018 to help assess changes in the coverage of plant species over time, as these changes could impact evapotranspiration and water table patterns. A 20-meter buffer zone was created around each well location, and the composition of vegetation within this buffer zone was quantified using QGIS version 3.30.2. While four time-points may not be sufficient for statistically identifying trends, we analyzed the changes observed. To put the measurement time periods in context and ensure that our selected seasons were not anomalous, we compared water levels in spring 1999 and 2019 relative to the astronomical cycles driving interannual sea level variability using data from the Battery tide gauge. We also compared spring high tide levels in 1999 and 2019 with surrounding years. The main astronomical cycles thought to influence tides include the 18.6-year lunar nodal cycle and the 4.4-year subharmonic of the 8.85-year lunar perigee cycle. As our 1999 and 2019 measurements were collected during slightly different time periods (April/May 1999 vs. May/June 2019), we also examined mean monthly water levels (1980-2022) from the NOAA Battery tidal gauge to identify potential artifacts. We obtained rainfall data from spring 1999 and 2019 from the nearest precipitation monitoring station (Westchester airport) to determine whether the measurements were made during an unusually wet or dry period. The sampling periods were 20 years apart, so they occurred at approximately the same point in the 18.6-year lunar nodal cycle. Pressure transducer data was processed using HOBOware Pro (Version 3.7.16, Onset Computer Corporation, Bourne, MA) with reference water levels collected in the field. The data were corrected for atmospheric pressure using the HOBOware barometric compensation assistant, using data from the Hudson River National Estuarine Research Reserve. Raw water elevation data from 1999 was analyzed in conjunction with the 2019 data. Water level data from 1999 were converted from the NVGD29 to NAVD 88 datum using NOAA VDatum v4.0.1 prior to analysis. Well seven's transducer experienced three brief malfunctions from May 30 to June 3, 2019, resulting in inaccurate elevation measurements for a total of 19.5 hours. These data were excluded from the analysis. In 1999, well seven also experienced malfunctions, which were corrected by Montalto into smoothed six-hour increments using average water elevation measurements and calculated error, calibrated using regression. No other well transducers appeared to have malfunctioned. Groundwater hydrology plays an important role in coastal marsh biogeochemical function, in part because groundwater dynamics drive the zonation of macrophyte community distribution. Changes that occur over time, such as sea level rise and shifts in habitat structure are likely altering groundwater dynamics and eco-hydrological zonation. We examined tidal flooding and marsh water table dynamics in 1999 and 2019 and mapped shifts in plant distributions over time, at Piermont Marsh, a brackish tidal marsh located along the Hudson River Estuary near New York City. We found evidence that the marsh surface was flooded more frequently in 2019 than in 1999, and that tides were propagating further into the marsh in 2019, although marsh surface elevation gains were largely matching that of sea level rise. The changes in groundwater hydrology that we observed are likely due to the high tide rising at a rate that is greater than that of mean sea level. In addition, we reported on changes in plant cover by P. australis, which has displaced native marsh vegetation at Piermont Marsh. Although P. australis has increased in cover, wrack deposition and plant die off associated Superstorm Sandy allowed for native vegetation to rebound in part of our focus area. These results suggest that climate change and plant community composition may interact to shape ecohydrologic zonation. Considering these results, we recommend that habitat models consider tidal range expansion and groundwater hydrology as metrics when predicting the impact of sea level rise on marsh resilience.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.