- home
- Advanced Search
- Energy Research
- 2021-2025
- 12. Responsible consumption
- GB
- IT
- DE
- Energy Research
- 2021-2025
- 12. Responsible consumption
- GB
- IT
- DE
Research data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Seyedvahid Vakili; Alessandro Schönborn; Aykut I. Ölçer;AbstractShipbuilding is an energy-intensive industrial sector that produces a significant amount of waste, pollution and air emissions. However, the International Maritime Organization concentrates only on reducing emissions during the operational phase. In order to completely phase out emissions from the shipping industry, a life-cycle approach must be taken. The study implemented the proposed transdisciplinary energy management framework in a Bangladeshi shipyard. The framework aims to support shipyard decision makers in making rational and optimized decisions to make shipyards sustainable, while maintaining good product quality and reducing relative cost. This is achieved by applying the Fuzzy Analytical Hierarchy Process and Fuzzy Order of Preference by Similarity to Ideal Solution methods to identify optimal solutions. In addition to making shipyards more sustainable, the framework can enhance both the business and socio-economic prospects of the shipyard and promote the reputation of the shipyard and improve its competitiveness and, in line with this, lead to the promotion of nationally determined contributions under the Paris Agreement for States. The implementation of the framework shows that the political and legal discipline, the social criteria and the implementation of ISO 14001 and cyber security were the most important criteria and options for the yard's decision makers.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Sep 2023Publisher:Dryad Mason, Victoria; Burden, Annette; Epstein, Graham; Jupe, Lucy; Wood, Kevin; Skov, Martin;# Data from: Blue Carbon Benefits from Global Saltmarsh Restoration [https://doi.org/10.5061/dryad.pc866t1vp](https://doi.org/10.5061/dryad.pc866t1vp) This README file was generated on 12th September 2023 by Victoria Mason. **Title of Dataset:** Blue carbon benefits from global saltmarsh restoration. **Author information:** * Victoria G. Mason, Bangor University/Royal Netherlands Institute for Sea Research (NIOZ), victoria.mason@nioz.nl (*Corresponding author*) * Annette Burden, UK Centre for Ecology & Hydrology * Graham Epstein, University of Exeter/University of Victoria * Lucy L. Jupe, Wildfowl & Wetlands Trust * Kevin A. Wood, Wildfowl & Wetlands Trust * Martin W. Skov, Bangor University **Summary of dataset:** These data include all data which were extracted or derived from relevant studies on global saltmarsh carbon storage and greenhouse gas flux. Data were obtained following screening of 29,182 peer reviewed published studies for relevant data, which were then extracted from 431 studies via text, tables and figures. We then used a meta-analysis to assess drivers of variation in global saltmarsh and greenhouse gas flux. * Date of literature search: 21st January 2022. * Date of data extraction: February - March 2022 * Literature search conducted via: Scopus + Web of Science ## Description of the data and file structure The contents of these data include: * **Full dataset (Aug2023\_GlobalCarbonReview\_FullDataset.xls):** All data extracted from 431 relevant studies and used in analysis. This includes a title page, metadata (with descriptions of column headers) and the full dataset. Response variables included: * Carbon stock * Percentage organic carbon * Bulk density * Sediment accretion rate * Carbon accumulation rate * Carbon dioxide flux * Methane flux * Nitrous oxide flux **\- Data on each included study \(Aug2023\_GlobalCarbonReview\_IncludedStudies\.xls\):** List of each study included in the final analysis, and its metadata. This includes a title page, metadata (with descriptions of column headers) and the dataset. All data include standard deviation (SD) and n (number of replicates) where provided by the original study, which were used to calculate Hedge's *g* effect sizes reported in the subsequent study. | Frequently used abbreviations: | | | ------------------------------ | --- | | C | carbon | | OC | organic carbon | | GHG | greenhouse gas | | bd | bulk density (g cm-3 dry sediment) | | Y/N | yes/no | | ref | reference | | lat | latitude | | long | longitude | | rest | restoration | | prec | precipitation | | sal | salinity | | acc | accretion | | resp | respiration | | SR | soil respiration (appears for CO2 flux) | | ER | ecosystem respiration (appears for CO2 flux) | | n | number of samples included in mean/standard deviation | | sd | standard deviation | All abbreviations used are outlined in the ‘Metadata’ worksheet of .xls files. **Data specific information for Aug2023\_GlobalCarbonReview\_FullDataset.xls:** Number of variables: 88 Number of cases/rows: 2055 Variables included: See 'Metadata' sheet **Data specific information for** **Aug2023\_GlobalCarbonReview\_IncludedStudies.xls:** Number of variables: 47 Number of cases/rows: 431 Variables included: See 'Metadata' sheet **Empty cells:** Cells are empty where data on that variable were not provided by the original study from which they were extracted. For example, where a study provided data on carbon stock variables, but not greenhouse gas flux. For further details, see the 'Metadata' sheets of each file. ## Sharing/Access information These data are available via Dryad, and described in ‘Blue Carbon Benefits from Global Saltmarsh Restoration’, in Global Change Biology. **DOI:** 10.1111/gcb.16943 Data were extracted from 431 published peer reviewed articles, the details of which can be found in the attached datasheets. Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of ‘blue’ carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41–2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93–207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% global-energy-related CO2 emissions – a substantial amount, considering marshes represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern costs of the USA and Australia being particular hotspots for carbon storage. Whilst the study reveals paucity of data for some variables and continents, suggesting a need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Association Internationale de management strategique (AIMS) Authors: Liliane Carmagnac; Anne Touboulic; Valentina Carbone;Multistakeholder Meta-Organisations (MS-MOs) are often perceived as a ‘magic bullet’ that can tackle societal grand challenges in global supply chains. In this paper, we consider the case of the Roundtable on Sustainable Palm Oil (RSPO), and we investigate the extent to which an MS-MO reshapes the attribution of responsibility for sustainability in supply chains, especially in relation to underlying power dynamics. We conduct a multimodal critical discourse analysis of a broad range of sources, including videos and interviews. We show that through its discursive strategies, the RSPO allocates the responsibility for social and environmental issues to the two extremes of the supply chain: objectifying consumers at one end and smallholders at the other, hence reproducing and even exacerbating the traditional imbalanced power dynamics in supply chains. Our work contributes to the emerging, more critical strand of research investigating meta-organisations (MOs) and sustainable supply chain management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.
Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Michela Lucian; Fabio Merzari; Michele Gubert; Antonio Messineo; Maurizio Volpe;doi: 10.3390/su13169343
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MIURMIURCarla Zarbà; Gaetano Chinnici; Giovanni La Via; Salvatore Bracco; Biagio Pecorino; Mario D’Amico;doi: 10.3390/su13158350
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Seyedvahid Vakili; Alessandro Schönborn; Aykut I. Ölçer;AbstractShipbuilding is an energy-intensive industrial sector that produces a significant amount of waste, pollution and air emissions. However, the International Maritime Organization concentrates only on reducing emissions during the operational phase. In order to completely phase out emissions from the shipping industry, a life-cycle approach must be taken. The study implemented the proposed transdisciplinary energy management framework in a Bangladeshi shipyard. The framework aims to support shipyard decision makers in making rational and optimized decisions to make shipyards sustainable, while maintaining good product quality and reducing relative cost. This is achieved by applying the Fuzzy Analytical Hierarchy Process and Fuzzy Order of Preference by Similarity to Ideal Solution methods to identify optimal solutions. In addition to making shipyards more sustainable, the framework can enhance both the business and socio-economic prospects of the shipyard and promote the reputation of the shipyard and improve its competitiveness and, in line with this, lead to the promotion of nationally determined contributions under the Paris Agreement for States. The implementation of the framework shows that the political and legal discipline, the social criteria and the implementation of ISO 14001 and cyber security were the most important criteria and options for the yard's decision makers.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s41072-022-00123-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Sep 2023Publisher:Dryad Mason, Victoria; Burden, Annette; Epstein, Graham; Jupe, Lucy; Wood, Kevin; Skov, Martin;# Data from: Blue Carbon Benefits from Global Saltmarsh Restoration [https://doi.org/10.5061/dryad.pc866t1vp](https://doi.org/10.5061/dryad.pc866t1vp) This README file was generated on 12th September 2023 by Victoria Mason. **Title of Dataset:** Blue carbon benefits from global saltmarsh restoration. **Author information:** * Victoria G. Mason, Bangor University/Royal Netherlands Institute for Sea Research (NIOZ), victoria.mason@nioz.nl (*Corresponding author*) * Annette Burden, UK Centre for Ecology & Hydrology * Graham Epstein, University of Exeter/University of Victoria * Lucy L. Jupe, Wildfowl & Wetlands Trust * Kevin A. Wood, Wildfowl & Wetlands Trust * Martin W. Skov, Bangor University **Summary of dataset:** These data include all data which were extracted or derived from relevant studies on global saltmarsh carbon storage and greenhouse gas flux. Data were obtained following screening of 29,182 peer reviewed published studies for relevant data, which were then extracted from 431 studies via text, tables and figures. We then used a meta-analysis to assess drivers of variation in global saltmarsh and greenhouse gas flux. * Date of literature search: 21st January 2022. * Date of data extraction: February - March 2022 * Literature search conducted via: Scopus + Web of Science ## Description of the data and file structure The contents of these data include: * **Full dataset (Aug2023\_GlobalCarbonReview\_FullDataset.xls):** All data extracted from 431 relevant studies and used in analysis. This includes a title page, metadata (with descriptions of column headers) and the full dataset. Response variables included: * Carbon stock * Percentage organic carbon * Bulk density * Sediment accretion rate * Carbon accumulation rate * Carbon dioxide flux * Methane flux * Nitrous oxide flux **\- Data on each included study \(Aug2023\_GlobalCarbonReview\_IncludedStudies\.xls\):** List of each study included in the final analysis, and its metadata. This includes a title page, metadata (with descriptions of column headers) and the dataset. All data include standard deviation (SD) and n (number of replicates) where provided by the original study, which were used to calculate Hedge's *g* effect sizes reported in the subsequent study. | Frequently used abbreviations: | | | ------------------------------ | --- | | C | carbon | | OC | organic carbon | | GHG | greenhouse gas | | bd | bulk density (g cm-3 dry sediment) | | Y/N | yes/no | | ref | reference | | lat | latitude | | long | longitude | | rest | restoration | | prec | precipitation | | sal | salinity | | acc | accretion | | resp | respiration | | SR | soil respiration (appears for CO2 flux) | | ER | ecosystem respiration (appears for CO2 flux) | | n | number of samples included in mean/standard deviation | | sd | standard deviation | All abbreviations used are outlined in the ‘Metadata’ worksheet of .xls files. **Data specific information for Aug2023\_GlobalCarbonReview\_FullDataset.xls:** Number of variables: 88 Number of cases/rows: 2055 Variables included: See 'Metadata' sheet **Data specific information for** **Aug2023\_GlobalCarbonReview\_IncludedStudies.xls:** Number of variables: 47 Number of cases/rows: 431 Variables included: See 'Metadata' sheet **Empty cells:** Cells are empty where data on that variable were not provided by the original study from which they were extracted. For example, where a study provided data on carbon stock variables, but not greenhouse gas flux. For further details, see the 'Metadata' sheets of each file. ## Sharing/Access information These data are available via Dryad, and described in ‘Blue Carbon Benefits from Global Saltmarsh Restoration’, in Global Change Biology. **DOI:** 10.1111/gcb.16943 Data were extracted from 431 published peer reviewed articles, the details of which can be found in the attached datasheets. Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of ‘blue’ carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41–2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93–207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% global-energy-related CO2 emissions – a substantial amount, considering marshes represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern costs of the USA and Australia being particular hotspots for carbon storage. Whilst the study reveals paucity of data for some variables and continents, suggesting a need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Association Internationale de management strategique (AIMS) Authors: Liliane Carmagnac; Anne Touboulic; Valentina Carbone;Multistakeholder Meta-Organisations (MS-MOs) are often perceived as a ‘magic bullet’ that can tackle societal grand challenges in global supply chains. In this paper, we consider the case of the Roundtable on Sustainable Palm Oil (RSPO), and we investigate the extent to which an MS-MO reshapes the attribution of responsibility for sustainability in supply chains, especially in relation to underlying power dynamics. We conduct a multimodal critical discourse analysis of a broad range of sources, including videos and interviews. We show that through its discursive strategies, the RSPO allocates the responsibility for social and environmental issues to the two extremes of the supply chain: objectifying consumers at one end and smallholders at the other, hence reproducing and even exacerbating the traditional imbalanced power dynamics in supply chains. Our work contributes to the emerging, more critical strand of research investigating meta-organisations (MOs) and sustainable supply chain management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37725/mgmt.v25.4235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.
Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:UKRI | Pollutants in the Urban E...UKRI| Pollutants in the Urban Environment: An Integrated Framework for Improving Sustainability of the Indoor Environment (PUrE Intrawise)Authors: Benjamin Greening; Tim Braunholtz-Speight; Ruth Wood; Muir Freer;With the 2015 Paris Agreement pursuing efforts to limit global temperature increase to below 2°C above pre-industrial levels and the “energy trilemma” goals of energy security, energy equity and environmental sustainability, decarbonisation remains a priority across all of the United Kingdom (United Kingdom) energy system, not just electricity. Electricity and thermal energy storage technologies can offer a host of benefits across the energy value chain through the abilityS to capture, store and then release electricity or thermal energy over a period of time. These benefits include helping capture the full potential of renewable generation and providing services such as frequency response and reserve to Great Britain’s (GB) electricity system. In addition, with the aforementioned climate targets in mind, energy storage can also play a role in facilitating the decarbonisation of other activities and sectors. Here we delve deeper into how energy storage technologies can contribute to both energy sector transformation and more broadly, decarbonisation. Furthermore, we discuss the importance of ensuring a technology-agnostic approach to the development of policy and regulation with relevance to energy storage. This ensures that storage technologies with significant potential to contribute to the ‘energy trilemma’ goals are not precluded from entering the market due to unfavourable policy and regulatory frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1109997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Michela Lucian; Fabio Merzari; Michele Gubert; Antonio Messineo; Maurizio Volpe;doi: 10.3390/su13169343
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MIURMIURCarla Zarbà; Gaetano Chinnici; Giovanni La Via; Salvatore Bracco; Biagio Pecorino; Mario D’Amico;doi: 10.3390/su13158350
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu