- home
- Advanced Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- US
- DE
- IT
- Energy Research
- 2021-2025
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- US
- DE
- IT
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States) Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;doi: 10.7799/1845718
This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 Jan 2022Publisher:Dryad Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; Nielsen, Stuart; Monks, Joanne M.;Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d51c5b058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Lafond, François; Pichler, Anton;This data publication offers updated data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. Compared to a [previous version](https://doi.org/10.4119/unibi/2941555), it also contains data on biofuels and fuels from waste technologies. The updated version also contains the code (R-scripts) that have been used to (1) compile the data and (2) to reproduce the statistical analysis including figures and tables presented in the final paper Hötte, Pichler, Lafond (2021): "The rise of science in low-carbon energy technologies", RSER. DOI: [10.1016/j.rser.2020.110654](10.1016/j.rser.2020.110654). This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing, cited (Patent numbers). Moreover, this data publication contains a folder "code" with 2 subfolders: - "R_code_create_data" contains the R-scripts used to create the data sample. - "R_code_plots_and_figures" contains all R-scripts used to make the statistical analyses presented in the text (including figures and tables). Please check the read-me documents in the code folder for further detail. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: https://creativecommons.org/licenses/by/4.0/legalcode Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this article: Kerstin Hötte, Anton Pichler, François Lafond, The rise of science in low-carbon energy technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021. https://doi.org/10.1016/j.rser.2020.110654 ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate chagen. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources"), Y02E03 ("Energy generation of nuclear origin") and Y02E5 ("Technologies for the production of fuel of non-fossil origin") technologies are used. 10 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Biofuels, Fuels from waste, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: 10.5281/zenodo.3685972 The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 10 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro, biofuels, (fuels from) waste) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fields were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assigned. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) - "patent:citations.RData": Patent citations among all patents (not only LCET), 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) **Note:** The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage, but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - #papers in MAG: 179,083,029 - #all patents: 10,160,667 - #citing patents: 2,058,233 - #cited papers: 4,404,088 - #citation links from patents to papers: 34,959,193 LCET subset: - #LCET patents: 65,305 - #citing LCET patents: 22,017 - #cited papers: 103,645 - #citation links from LCET patents to papers: 396,504 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >240,000 hierarchical CPC classes, 10 LCET types Citation links: - Reference type, citation type, reliability score If you have further questions about the data or suggestions, please contact: **kerstin.hotte@oxfordmartin.ox.ac.uk** ### Acknowledgements ### The authors want to thank the Center for Research Data Management of Bielefeld University and in particular Cord Wiljes for excellent support. ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2021License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2950291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Dryad Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; Williams, Stephen E.;Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffg3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spnggfls245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States) Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;doi: 10.7799/1845718
This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1845718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu