- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Embargo
- 14. Life underwater
- DE
- IT
- Energy Research
- Open Access
- Closed Access
- Embargo
- 14. Life underwater
- DE
- IT
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYAuthors: Klages, Susanne; Heidecke, Claudia; Osterburg, Bernhard;doi: 10.3390/w12061519
The hot summer of 2018 posed many challenges with regard to water shortages and yield losses, especially for agricultural production. These agricultural impacts might further pose consequent threats for the environment. In this paper, we deduce the impact of droughts on agricultural land management and on water quality owing to nitrate pollution. Using national statistics, we calculate a Germany-wide soil surface nitrogen budget for 2018 and deduce the additional N surplus owing to the dry weather conditions. Using a model farm approach, we compare fertilization practices and legal restrictions for arable and pig breeding farms. The results show that, nationwide, at least 464 kt of nitrogen were not transferred to plant biomass in 2018, which equals an additional average nitrogen surplus of 30 kg/ha. The surplus would even have amounted to 43 kg/ha, if farmers had continued their fertilization practice from preceding years, but German farmers applied 161 kt less nitrogen in 2018 than in the year before, presumably as a result of the new implications of the Nitrates Directive, and, especially on grassland, owing to the drought. As nitrogen surplus is regarded as an “agri-drinking water indicator” (ADWI), an increase of the surplus entails water pollution with nitrates. The examples of the model farms show that fertilization regimes with high shares of organic fertilizers produce higher nitrogen surpluses. Owing to the elevated concentrations on residual nitrogen in soils, the fertilization needs of crops in spring 2019 were less pronounced than in preceding years. Thus, the quantity of the continuously produced manure in livestock farms puts additional pressure on existing storage capacities. This may particularly be the case in the hot-spot regions of animal breeding in the north-west of Germany, where manure production, biogas plants, and manure imports are accumulating. The paper concludes that water shortages under climate change not only impact agricultural production and yields, but also place further challenges and threats to nutrient management and the environment. The paper discusses preventive and emergency management options for agriculture to support farmers in extremely dry and hot conditions.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYAuthors: Klages, Susanne; Heidecke, Claudia; Osterburg, Bernhard;doi: 10.3390/w12061519
The hot summer of 2018 posed many challenges with regard to water shortages and yield losses, especially for agricultural production. These agricultural impacts might further pose consequent threats for the environment. In this paper, we deduce the impact of droughts on agricultural land management and on water quality owing to nitrate pollution. Using national statistics, we calculate a Germany-wide soil surface nitrogen budget for 2018 and deduce the additional N surplus owing to the dry weather conditions. Using a model farm approach, we compare fertilization practices and legal restrictions for arable and pig breeding farms. The results show that, nationwide, at least 464 kt of nitrogen were not transferred to plant biomass in 2018, which equals an additional average nitrogen surplus of 30 kg/ha. The surplus would even have amounted to 43 kg/ha, if farmers had continued their fertilization practice from preceding years, but German farmers applied 161 kt less nitrogen in 2018 than in the year before, presumably as a result of the new implications of the Nitrates Directive, and, especially on grassland, owing to the drought. As nitrogen surplus is regarded as an “agri-drinking water indicator” (ADWI), an increase of the surplus entails water pollution with nitrates. The examples of the model farms show that fertilization regimes with high shares of organic fertilizers produce higher nitrogen surpluses. Owing to the elevated concentrations on residual nitrogen in soils, the fertilization needs of crops in spring 2019 were less pronounced than in preceding years. Thus, the quantity of the continuously produced manure in livestock farms puts additional pressure on existing storage capacities. This may particularly be the case in the hot-spot regions of animal breeding in the north-west of Germany, where manure production, biogas plants, and manure imports are accumulating. The paper concludes that water shortages under climate change not only impact agricultural production and yields, but also place further challenges and threats to nutrient management and the environment. The paper discusses preventive and emergency management options for agriculture to support farmers in extremely dry and hot conditions.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Elsevier BV MISIC, CRISTINA; M. GIANI; POVERO, PAOLO; L. POLIMENE; FABIANO, MAURO;The chemical and biological properties of the water column at a Tyrrhenian site (Isola del Giglio) were studied during a 3-year period. The results highlighted the oligotrophic features of the site, characterised by quite low concentrations of organic carbon (on average DOC 102 micromol/L and POC 9 micromol/L). Relevant bacterial biomass (on average 42.1 microg C/L) and a notable activity (in terms of frequency of dividing cells, on average more than 5%) were observed. However, remarkable changes for these parameters were seasonally recorded. The cyclic occurrence, generally during the late spring-summer period, of benthic mucilage indicated that localised distrophic processes may occur. In particular, the benthic mucilage events of 2000 and 2001 were investigated, although some comparative information was available also for 1999 and 2002. The mucilage aggregates generally showed high bacterial colonisation, which have remarkable effects on the organic matter cycle both inside the aggregates and in the surrounding seawater. During the benthic mucilage development, an increase of DOC and POC concentrations was observed (up to 129 and 18 micromol/L, respectively, in June 2000 and up to 145 and 10 micromol/L, respectively, in May and June 2001) in the water column adjacent to the bottom. However, a general decrease of the trophic value of particulate matter (in terms of C/N ratio) was also observed, especially in 2000 after the disappearance of the mucilage. The available energy and organic matter during the mucilage events led to an increased presence of bacteria in the bottom waters of the Isola del Giglio, with maximum biomass values in 2001. Similarly, the replicative activity of bacteria was higher in 2001 (frequency of dividing cells about 5% vs. 3% of 2000). The lower activity of 2000, in addition to the lower trophic value of organic matter and different environmental conditions (namely lower temperature), might be involved in the persistence of mucilage in 2000 with respect to the rapid disappearance observed in 2001.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Elsevier BV MISIC, CRISTINA; M. GIANI; POVERO, PAOLO; L. POLIMENE; FABIANO, MAURO;The chemical and biological properties of the water column at a Tyrrhenian site (Isola del Giglio) were studied during a 3-year period. The results highlighted the oligotrophic features of the site, characterised by quite low concentrations of organic carbon (on average DOC 102 micromol/L and POC 9 micromol/L). Relevant bacterial biomass (on average 42.1 microg C/L) and a notable activity (in terms of frequency of dividing cells, on average more than 5%) were observed. However, remarkable changes for these parameters were seasonally recorded. The cyclic occurrence, generally during the late spring-summer period, of benthic mucilage indicated that localised distrophic processes may occur. In particular, the benthic mucilage events of 2000 and 2001 were investigated, although some comparative information was available also for 1999 and 2002. The mucilage aggregates generally showed high bacterial colonisation, which have remarkable effects on the organic matter cycle both inside the aggregates and in the surrounding seawater. During the benthic mucilage development, an increase of DOC and POC concentrations was observed (up to 129 and 18 micromol/L, respectively, in June 2000 and up to 145 and 10 micromol/L, respectively, in May and June 2001) in the water column adjacent to the bottom. However, a general decrease of the trophic value of particulate matter (in terms of C/N ratio) was also observed, especially in 2000 after the disappearance of the mucilage. The available energy and organic matter during the mucilage events led to an increased presence of bacteria in the bottom waters of the Isola del Giglio, with maximum biomass values in 2001. Similarly, the replicative activity of bacteria was higher in 2001 (frequency of dividing cells about 5% vs. 3% of 2000). The lower activity of 2000, in addition to the lower trophic value of organic matter and different environmental conditions (namely lower temperature), might be involved in the persistence of mucilage in 2000 with respect to the rapid disappearance observed in 2001.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Bernardo Tabuenca; Marco Kalz; Ansje Löhr;(1) The amount of plastic discharges in the environment has drastically increased in the last decades negatively affecting aquatic ecosystems, societies, and the world economy. The policies initiated to deal with this problem are insufficient and there is an urgency to initiate local actions based on a deep understanding of the factors involved. (2) This paper investigates the potential of massive open online courses (MOOCs) to spread environmental education. Therefore, the conclusions drawn from the implementation of a MOOC to combat the problem of marine litter in the world are presented. (3) This work describes the activity of 3632 participants from 64 countries taking an active role presenting useful tools, connecting them with the main world associations, and defining applied action plans in their local area. Pre- and post-questionnaires explore behavioral changes regarding the actions of participants to combat marine litter. The role of MOOCs is contrasted with social media, formal education, and informal education. (4) Findings suggest that MOOCs are useful instruments to promote environmental activism, and to develop local solutions to global problems, for example, clean beaches, supplanting plastic bottles, educational initiatives, and prohibition of single-use plastic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Bernardo Tabuenca; Marco Kalz; Ansje Löhr;(1) The amount of plastic discharges in the environment has drastically increased in the last decades negatively affecting aquatic ecosystems, societies, and the world economy. The policies initiated to deal with this problem are insufficient and there is an urgency to initiate local actions based on a deep understanding of the factors involved. (2) This paper investigates the potential of massive open online courses (MOOCs) to spread environmental education. Therefore, the conclusions drawn from the implementation of a MOOC to combat the problem of marine litter in the world are presented. (3) This work describes the activity of 3632 participants from 64 countries taking an active role presenting useful tools, connecting them with the main world associations, and defining applied action plans in their local area. Pre- and post-questionnaires explore behavioral changes regarding the actions of participants to combat marine litter. The role of MOOCs is contrasted with social media, formal education, and informal education. (4) Findings suggest that MOOCs are useful instruments to promote environmental activism, and to develop local solutions to global problems, for example, clean beaches, supplanting plastic bottles, educational initiatives, and prohibition of single-use plastic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Authors: Di Prisco G; Verde C;handle: 20.500.14243/292156
The official involvement of Italy in Antarctic research dates back to 1985, when Mario Zucchelli Station (the former Terra Nova Bay Station) was established in Terra Nova Bay. Italy joined the Antarctic Treaty in 1987. This article is an overview of the wide-ranging research in marine biology performed in the last three decades by the author's team in the Ross Sea. Fundamental questions have been addressed, related to cold adaptations--with special attention to the molecular bases--evolved by marine organisms along with progressive cooling in this geographic area, also analysed in comparison with other important areas, such as the Peninsula, the Weddell Sea, the sub-Antarctic and the Arctic. The basic stepping stone of this research was the integration of ecophysiology with molecular aspects, in the general framework of biodiversity, adaptation and evolution. Investigations have addressed a number of Ross Sea taxa, comprising fish, birds, urchins, whales, seals and bacteria. Its significance has special meaning in view of the control that Antarctica exerts on the world climate and ocean circulation, which has awakened great interest in the evolutionary biology of the organisms that live there.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Authors: Di Prisco G; Verde C;handle: 20.500.14243/292156
The official involvement of Italy in Antarctic research dates back to 1985, when Mario Zucchelli Station (the former Terra Nova Bay Station) was established in Terra Nova Bay. Italy joined the Antarctic Treaty in 1987. This article is an overview of the wide-ranging research in marine biology performed in the last three decades by the author's team in the Ross Sea. Fundamental questions have been addressed, related to cold adaptations--with special attention to the molecular bases--evolved by marine organisms along with progressive cooling in this geographic area, also analysed in comparison with other important areas, such as the Peninsula, the Weddell Sea, the sub-Antarctic and the Arctic. The basic stepping stone of this research was the integration of ecophysiology with molecular aspects, in the general framework of biodiversity, adaptation and evolution. Investigations have addressed a number of Ross Sea taxa, comprising fish, birds, urchins, whales, seals and bacteria. Its significance has special meaning in view of the control that Antarctica exerts on the world climate and ocean circulation, which has awakened great interest in the evolutionary biology of the organisms that live there.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Funded by:FCT | D4FCT| D4Ridho Hantoro; Irfan Syarif Arief; Alfa Muhammad Megawan; Juniarko Prananda; I Ketut Aria Pria Utama;Potential wave energy in Indonesia between 5 kW m–1 to 20 kW m–1 depending on-site location coastline. This research in ocean energy of Wave Energy Conversion (WEC) is wave activated body using the floating or motion hull due to kinetic and momentum energy from an ocean wave. The pendulum movement cause by a floating hull to drive the electric generator. The shape of the hull, displacement, and position point of the mooring line greatly influences the movement of the hull. This paper discusses how to computational fluid dynamics (CFD) simulation can solve and determine the best mooring line position in the hull. Moreover, the shape of the hull at under waterline or drought has slope angle 45°, length overall 3 m, breadth 1.5 m, depth 2 m, and draft 0.65 m. One of the boundary conditions in the domain CFD, the direction of a wave from inlet boundary to starboard or port side using regular wave. The position both of mooring bitts are at forwarding perpendicular and after perpendicular. Three-position of mooring bitts that have simulated CFD: under the waterline, (ii) at the waterline, and (iii) up waterline. The result of simulation that the best position of mooring bitts is at the waterline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Funded by:FCT | D4FCT| D4Ridho Hantoro; Irfan Syarif Arief; Alfa Muhammad Megawan; Juniarko Prananda; I Ketut Aria Pria Utama;Potential wave energy in Indonesia between 5 kW m–1 to 20 kW m–1 depending on-site location coastline. This research in ocean energy of Wave Energy Conversion (WEC) is wave activated body using the floating or motion hull due to kinetic and momentum energy from an ocean wave. The pendulum movement cause by a floating hull to drive the electric generator. The shape of the hull, displacement, and position point of the mooring line greatly influences the movement of the hull. This paper discusses how to computational fluid dynamics (CFD) simulation can solve and determine the best mooring line position in the hull. Moreover, the shape of the hull at under waterline or drought has slope angle 45°, length overall 3 m, breadth 1.5 m, depth 2 m, and draft 0.65 m. One of the boundary conditions in the domain CFD, the direction of a wave from inlet boundary to starboard or port side using regular wave. The position both of mooring bitts are at forwarding perpendicular and after perpendicular. Three-position of mooring bitts that have simulated CFD: under the waterline, (ii) at the waterline, and (iii) up waterline. The result of simulation that the best position of mooring bitts is at the waterline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Meng, Qu; Yingyi, Zhang; Zexia, Gao; Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;pmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYAuthors: Klages, Susanne; Heidecke, Claudia; Osterburg, Bernhard;doi: 10.3390/w12061519
The hot summer of 2018 posed many challenges with regard to water shortages and yield losses, especially for agricultural production. These agricultural impacts might further pose consequent threats for the environment. In this paper, we deduce the impact of droughts on agricultural land management and on water quality owing to nitrate pollution. Using national statistics, we calculate a Germany-wide soil surface nitrogen budget for 2018 and deduce the additional N surplus owing to the dry weather conditions. Using a model farm approach, we compare fertilization practices and legal restrictions for arable and pig breeding farms. The results show that, nationwide, at least 464 kt of nitrogen were not transferred to plant biomass in 2018, which equals an additional average nitrogen surplus of 30 kg/ha. The surplus would even have amounted to 43 kg/ha, if farmers had continued their fertilization practice from preceding years, but German farmers applied 161 kt less nitrogen in 2018 than in the year before, presumably as a result of the new implications of the Nitrates Directive, and, especially on grassland, owing to the drought. As nitrogen surplus is regarded as an “agri-drinking water indicator” (ADWI), an increase of the surplus entails water pollution with nitrates. The examples of the model farms show that fertilization regimes with high shares of organic fertilizers produce higher nitrogen surpluses. Owing to the elevated concentrations on residual nitrogen in soils, the fertilization needs of crops in spring 2019 were less pronounced than in preceding years. Thus, the quantity of the continuously produced manure in livestock farms puts additional pressure on existing storage capacities. This may particularly be the case in the hot-spot regions of animal breeding in the north-west of Germany, where manure production, biogas plants, and manure imports are accumulating. The paper concludes that water shortages under climate change not only impact agricultural production and yields, but also place further challenges and threats to nutrient management and the environment. The paper discusses preventive and emergency management options for agriculture to support farmers in extremely dry and hot conditions.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYAuthors: Klages, Susanne; Heidecke, Claudia; Osterburg, Bernhard;doi: 10.3390/w12061519
The hot summer of 2018 posed many challenges with regard to water shortages and yield losses, especially for agricultural production. These agricultural impacts might further pose consequent threats for the environment. In this paper, we deduce the impact of droughts on agricultural land management and on water quality owing to nitrate pollution. Using national statistics, we calculate a Germany-wide soil surface nitrogen budget for 2018 and deduce the additional N surplus owing to the dry weather conditions. Using a model farm approach, we compare fertilization practices and legal restrictions for arable and pig breeding farms. The results show that, nationwide, at least 464 kt of nitrogen were not transferred to plant biomass in 2018, which equals an additional average nitrogen surplus of 30 kg/ha. The surplus would even have amounted to 43 kg/ha, if farmers had continued their fertilization practice from preceding years, but German farmers applied 161 kt less nitrogen in 2018 than in the year before, presumably as a result of the new implications of the Nitrates Directive, and, especially on grassland, owing to the drought. As nitrogen surplus is regarded as an “agri-drinking water indicator” (ADWI), an increase of the surplus entails water pollution with nitrates. The examples of the model farms show that fertilization regimes with high shares of organic fertilizers produce higher nitrogen surpluses. Owing to the elevated concentrations on residual nitrogen in soils, the fertilization needs of crops in spring 2019 were less pronounced than in preceding years. Thus, the quantity of the continuously produced manure in livestock farms puts additional pressure on existing storage capacities. This may particularly be the case in the hot-spot regions of animal breeding in the north-west of Germany, where manure production, biogas plants, and manure imports are accumulating. The paper concludes that water shortages under climate change not only impact agricultural production and yields, but also place further challenges and threats to nutrient management and the environment. The paper discusses preventive and emergency management options for agriculture to support farmers in extremely dry and hot conditions.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Multidisciplinary Digital Publishing InstituteWaterArticleLicense: CC BYFull-Text: https://www.mdpi.com/2073-4441/12/6/1519/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Elsevier BV MISIC, CRISTINA; M. GIANI; POVERO, PAOLO; L. POLIMENE; FABIANO, MAURO;The chemical and biological properties of the water column at a Tyrrhenian site (Isola del Giglio) were studied during a 3-year period. The results highlighted the oligotrophic features of the site, characterised by quite low concentrations of organic carbon (on average DOC 102 micromol/L and POC 9 micromol/L). Relevant bacterial biomass (on average 42.1 microg C/L) and a notable activity (in terms of frequency of dividing cells, on average more than 5%) were observed. However, remarkable changes for these parameters were seasonally recorded. The cyclic occurrence, generally during the late spring-summer period, of benthic mucilage indicated that localised distrophic processes may occur. In particular, the benthic mucilage events of 2000 and 2001 were investigated, although some comparative information was available also for 1999 and 2002. The mucilage aggregates generally showed high bacterial colonisation, which have remarkable effects on the organic matter cycle both inside the aggregates and in the surrounding seawater. During the benthic mucilage development, an increase of DOC and POC concentrations was observed (up to 129 and 18 micromol/L, respectively, in June 2000 and up to 145 and 10 micromol/L, respectively, in May and June 2001) in the water column adjacent to the bottom. However, a general decrease of the trophic value of particulate matter (in terms of C/N ratio) was also observed, especially in 2000 after the disappearance of the mucilage. The available energy and organic matter during the mucilage events led to an increased presence of bacteria in the bottom waters of the Isola del Giglio, with maximum biomass values in 2001. Similarly, the replicative activity of bacteria was higher in 2001 (frequency of dividing cells about 5% vs. 3% of 2000). The lower activity of 2000, in addition to the lower trophic value of organic matter and different environmental conditions (namely lower temperature), might be involved in the persistence of mucilage in 2000 with respect to the rapid disappearance observed in 2001.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:Elsevier BV MISIC, CRISTINA; M. GIANI; POVERO, PAOLO; L. POLIMENE; FABIANO, MAURO;The chemical and biological properties of the water column at a Tyrrhenian site (Isola del Giglio) were studied during a 3-year period. The results highlighted the oligotrophic features of the site, characterised by quite low concentrations of organic carbon (on average DOC 102 micromol/L and POC 9 micromol/L). Relevant bacterial biomass (on average 42.1 microg C/L) and a notable activity (in terms of frequency of dividing cells, on average more than 5%) were observed. However, remarkable changes for these parameters were seasonally recorded. The cyclic occurrence, generally during the late spring-summer period, of benthic mucilage indicated that localised distrophic processes may occur. In particular, the benthic mucilage events of 2000 and 2001 were investigated, although some comparative information was available also for 1999 and 2002. The mucilage aggregates generally showed high bacterial colonisation, which have remarkable effects on the organic matter cycle both inside the aggregates and in the surrounding seawater. During the benthic mucilage development, an increase of DOC and POC concentrations was observed (up to 129 and 18 micromol/L, respectively, in June 2000 and up to 145 and 10 micromol/L, respectively, in May and June 2001) in the water column adjacent to the bottom. However, a general decrease of the trophic value of particulate matter (in terms of C/N ratio) was also observed, especially in 2000 after the disappearance of the mucilage. The available energy and organic matter during the mucilage events led to an increased presence of bacteria in the bottom waters of the Isola del Giglio, with maximum biomass values in 2001. Similarly, the replicative activity of bacteria was higher in 2001 (frequency of dividing cells about 5% vs. 3% of 2000). The lower activity of 2000, in addition to the lower trophic value of organic matter and different environmental conditions (namely lower temperature), might be involved in the persistence of mucilage in 2000 with respect to the rapid disappearance observed in 2001.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2005.09.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Bernardo Tabuenca; Marco Kalz; Ansje Löhr;(1) The amount of plastic discharges in the environment has drastically increased in the last decades negatively affecting aquatic ecosystems, societies, and the world economy. The policies initiated to deal with this problem are insufficient and there is an urgency to initiate local actions based on a deep understanding of the factors involved. (2) This paper investigates the potential of massive open online courses (MOOCs) to spread environmental education. Therefore, the conclusions drawn from the implementation of a MOOC to combat the problem of marine litter in the world are presented. (3) This work describes the activity of 3632 participants from 64 countries taking an active role presenting useful tools, connecting them with the main world associations, and defining applied action plans in their local area. Pre- and post-questionnaires explore behavioral changes regarding the actions of participants to combat marine litter. The role of MOOCs is contrasted with social media, formal education, and informal education. (4) Findings suggest that MOOCs are useful instruments to promote environmental activism, and to develop local solutions to global problems, for example, clean beaches, supplanting plastic bottles, educational initiatives, and prohibition of single-use plastic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Bernardo Tabuenca; Marco Kalz; Ansje Löhr;(1) The amount of plastic discharges in the environment has drastically increased in the last decades negatively affecting aquatic ecosystems, societies, and the world economy. The policies initiated to deal with this problem are insufficient and there is an urgency to initiate local actions based on a deep understanding of the factors involved. (2) This paper investigates the potential of massive open online courses (MOOCs) to spread environmental education. Therefore, the conclusions drawn from the implementation of a MOOC to combat the problem of marine litter in the world are presented. (3) This work describes the activity of 3632 participants from 64 countries taking an active role presenting useful tools, connecting them with the main world associations, and defining applied action plans in their local area. Pre- and post-questionnaires explore behavioral changes regarding the actions of participants to combat marine litter. The role of MOOCs is contrasted with social media, formal education, and informal education. (4) Findings suggest that MOOCs are useful instruments to promote environmental activism, and to develop local solutions to global problems, for example, clean beaches, supplanting plastic bottles, educational initiatives, and prohibition of single-use plastic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/10/2860/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen University of the Netherlands Research PortalArticle . 2019Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Authors: Di Prisco G; Verde C;handle: 20.500.14243/292156
The official involvement of Italy in Antarctic research dates back to 1985, when Mario Zucchelli Station (the former Terra Nova Bay Station) was established in Terra Nova Bay. Italy joined the Antarctic Treaty in 1987. This article is an overview of the wide-ranging research in marine biology performed in the last three decades by the author's team in the Ross Sea. Fundamental questions have been addressed, related to cold adaptations--with special attention to the molecular bases--evolved by marine organisms along with progressive cooling in this geographic area, also analysed in comparison with other important areas, such as the Peninsula, the Weddell Sea, the sub-Antarctic and the Arctic. The basic stepping stone of this research was the integration of ecophysiology with molecular aspects, in the general framework of biodiversity, adaptation and evolution. Investigations have addressed a number of Ross Sea taxa, comprising fish, birds, urchins, whales, seals and bacteria. Its significance has special meaning in view of the control that Antarctica exerts on the world climate and ocean circulation, which has awakened great interest in the evolutionary biology of the organisms that live there.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Authors: Di Prisco G; Verde C;handle: 20.500.14243/292156
The official involvement of Italy in Antarctic research dates back to 1985, when Mario Zucchelli Station (the former Terra Nova Bay Station) was established in Terra Nova Bay. Italy joined the Antarctic Treaty in 1987. This article is an overview of the wide-ranging research in marine biology performed in the last three decades by the author's team in the Ross Sea. Fundamental questions have been addressed, related to cold adaptations--with special attention to the molecular bases--evolved by marine organisms along with progressive cooling in this geographic area, also analysed in comparison with other important areas, such as the Peninsula, the Weddell Sea, the sub-Antarctic and the Arctic. The basic stepping stone of this research was the integration of ecophysiology with molecular aspects, in the general framework of biodiversity, adaptation and evolution. Investigations have addressed a number of Ross Sea taxa, comprising fish, birds, urchins, whales, seals and bacteria. Its significance has special meaning in view of the control that Antarctica exerts on the world climate and ocean circulation, which has awakened great interest in the evolutionary biology of the organisms that live there.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-015-2425-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Funded by:FCT | D4FCT| D4Ridho Hantoro; Irfan Syarif Arief; Alfa Muhammad Megawan; Juniarko Prananda; I Ketut Aria Pria Utama;Potential wave energy in Indonesia between 5 kW m–1 to 20 kW m–1 depending on-site location coastline. This research in ocean energy of Wave Energy Conversion (WEC) is wave activated body using the floating or motion hull due to kinetic and momentum energy from an ocean wave. The pendulum movement cause by a floating hull to drive the electric generator. The shape of the hull, displacement, and position point of the mooring line greatly influences the movement of the hull. This paper discusses how to computational fluid dynamics (CFD) simulation can solve and determine the best mooring line position in the hull. Moreover, the shape of the hull at under waterline or drought has slope angle 45°, length overall 3 m, breadth 1.5 m, depth 2 m, and draft 0.65 m. One of the boundary conditions in the domain CFD, the direction of a wave from inlet boundary to starboard or port side using regular wave. The position both of mooring bitts are at forwarding perpendicular and after perpendicular. Three-position of mooring bitts that have simulated CFD: under the waterline, (ii) at the waterline, and (iii) up waterline. The result of simulation that the best position of mooring bitts is at the waterline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Funded by:FCT | D4FCT| D4Ridho Hantoro; Irfan Syarif Arief; Alfa Muhammad Megawan; Juniarko Prananda; I Ketut Aria Pria Utama;Potential wave energy in Indonesia between 5 kW m–1 to 20 kW m–1 depending on-site location coastline. This research in ocean energy of Wave Energy Conversion (WEC) is wave activated body using the floating or motion hull due to kinetic and momentum energy from an ocean wave. The pendulum movement cause by a floating hull to drive the electric generator. The shape of the hull, displacement, and position point of the mooring line greatly influences the movement of the hull. This paper discusses how to computational fluid dynamics (CFD) simulation can solve and determine the best mooring line position in the hull. Moreover, the shape of the hull at under waterline or drought has slope angle 45°, length overall 3 m, breadth 1.5 m, depth 2 m, and draft 0.65 m. One of the boundary conditions in the domain CFD, the direction of a wave from inlet boundary to starboard or port side using regular wave. The position both of mooring bitts are at forwarding perpendicular and after perpendicular. Three-position of mooring bitts that have simulated CFD: under the waterline, (ii) at the waterline, and (iii) up waterline. The result of simulation that the best position of mooring bitts is at the waterline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019000017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu