- home
- Advanced Search
- Energy Research
- 2016-2025
- DE
- JP
- Energy Research
- 2016-2025
- DE
- JP
description Publicationkeyboard_double_arrow_right Article 2017Publisher:Frontiers Media SA Takuya Kitaoka; Takeo Yamakawa; Mio Sakamoto; Hinomi Yoshida; Duc Chanh Tin Doan; Mau Chien Dang; Yusuke Shiratori; Quang Tuyen Tran;Fuel-flexible solid oxide fuel cell (SOFC) technologies are presently under study in a Vietnam-Japan international joint research project. The purpose of this project is to develop and demonstrate an SOFC-incorporated energy circulation system for the sustainable development of the Mekong Delta region. Lab-scale methane fermentation experiments in this study with a mixture of biomass feedstock collected in the Mekong Delta (shrimp pond sludge, bagasse, and molasses from sugar production) recorded biogas production yield over 400 L kgVS−1 with H2S concentration below 50 ppm level. This real biogas was directly supplied to an SOFC without any fuel processing such as desulfurization, methane enrichment and pre-reforming, and stable power generation was achieved by applying paper-structured catalyst (PSC) technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors: Odenthal, Christian; Steinmann, Wolf-Dieter; Zunft, Stefan;Abstract A unique large scale pilot plant of the CellFlux thermal energy storage concept is experimentally investigated. This storage concept consists of a regenerator type thermal energy storage volume, which is coupled to a finned tube heat exchanger by a circulating intermediate working fluid. The system investigated in this work operates at a temperature of 390 °C and uses air as intermediate working fluid which is conveyed by a centrifugal fan. The storage volume has a bed length of over ten meters and is of a novel design, where the air flows in horizontal direction. Since this approach could cause a flow maldistribution, a thorough analysis is of major interest for the accuracy of subsequent numerical simulations. The experiments reveal that the mass flow along the centerline can be up to 20% higher than the mean bulk flow. A significant maldistribution between top and bottom area, however, is not observed. As an alternative to the typically used rock filling, the storage volume is equipped with standard hollow bricks. These bricks are cost effective but do not have a well-defined shape. Thus, the predictability of the pressure drop by correlations found in the literature is unclear. It turns out that the measured pressure drop is evenly distributed in axial flow direction but generally higher than expected from the assumption of pure channel flow. Further experiments are conducted to validate the heat capacity of the bricks and to derive a correlation for the inner heat transfer between bricks and storage walls. Eventually, the aim of the experimental investigation is a general proof of concept as basis for the numerical investigation. Thus, all specifications of the plant and the storage material are provided. The plant is analyzed towards plausibility of heat losses, showing that heat losses can be predicted well within the given uncertainties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Karlsruhe Publicly fundedFunded by:EC | RI Impact PathwaysEC| RI Impact PathwaysGiancarlo Ferrera; Giancarlo Ferrera; T. P. Watson; Oliver Fischer; Oliver Fischer; S. Fiorendi; C. Bhat; Olivier Leroy; M. K. Yanehsari; V. Arı; Simone Bologna; R. Aleksan; S. Myers; Leonid Rivkin; G. Catalano; S. V. Furuseth; Nathaniel Craig; M. Ramsey-Musolf; M. Merk; H. J. He; J. Proudfoot; X. Jiang; S. Kowalski; H. Chanal; Roderik Bruce; Radja Boughezal; S. Atieh; D. Liberati; E. Leogrande; Fady Bishara; Fady Bishara; O. Panella; O. Panella; Jiayin Gu; Lance D. Cooley; Alexander Ball; Paolo Castelnovo; A. Blondel; P. Sphicas; F. Dordei; Samuele Mariotto; Samuele Mariotto; I. Bellafont; A. Abada; Peter Braun-Munzinger; K. J. Eskola; J. M. Valet; Maria Paola Lombardo; Maria Paola Lombardo; Ph. Lebrun; S. P. Das; H. J. Yang; Luc Poggioli; Leonel Ferreira; Abhishek M. Iyer; A. Saba; Giovanni Volpini; Giovanni Volpini; Valeria Braccini; Federico Carra; S. J. De Jong; Daniela Bortoletto; Ayres Freitas; Jürgen Reuter; T. Sian; T. Sian; T. Sian; M. Nonis; G. Vorotnikov; V. Yermolchik; S. Jadach; T. Marriott-Dodington; M. Widorski; Jac Perez; Sinan Kuday; Gianluigi Arduini; J. Cervantes; H. Duran Yildiz; Victor P. Goncalves; Anke-Susanne Müller; G. Rolandi; M. Demarteau; Marumi Kado; Marumi Kado; Michael Syphers; Ryu Sawada; T. Podzorny; Sara Khatibi; Colin Bernet; Yuji Enari; M. Morrone; Y. Dydyshka; Alessandro Polini; Alessandro Polini; J. B. De Vivie De Regie; V. Raginel; M. Panareo; Patrick Draper; Y. Bai; V. Guzey; I. Tapan; D. Woog; A. Crivellin; Andrea Bastianin; M. Zobov; Caterina Vernieri; A. Carvalho; S. Rojas-Torres; N. Pukhaeva; O. Bolukbasi; Guilherme Milhano; M. Mohammadi Najafabadi; Andreas Salzburger; J. Gutierrez; D. K. Hong; A. Apyan; Peter Skands; S. Bertolucci; S. Bertolucci; Masaya Ishino; M. A. Pleier; T. Hoehn; C. Bernini; S. Baird; H. D. Yoo; S. Holleis; Adarsh Pyarelal; Clemens Lange; J. L. Biarrotte; C. Marquet; Wojciech Kotlarski; J. Barranco García; V. Smirnov; Ingo Ruehl; F. Couderc; O. Grimm; Ricardo Gonçalo; Enrico Scomparin; Enrico Scomparin; Giulia Sylva; Oreste Nicrosini; Oreste Nicrosini; Alessandro Tricoli; R. Contino; Hubert Kroha; Y. Zhang; Roberto Ferrari; Roberto Ferrari; Giuseppe Montenero; T. Srivastava; Luca Silvestrini; Marco Andreini; I. Aichinger; Brennan Goddard; C. Andris; P. N. Ratoff; G. Zick; Jorg Wenninger; Andrea Malagoli; M. Moreno Llácer; C. Han; Mauro Chiesa; Livio Fanò; Livio Fanò; S. M. Gascon-Shotkin; B. Strauss; W. Da Silva; Jana Faltova; Berndt Müller; Berndt Müller; M. Kordiaczyńska; André Schöning; Francesco Giffoni; M. Aburaia; Chiu-Chung Young; D. Chanal; Holger Podlech; G. Yang; M. Skrzypek; W. M. Yao; M. Podeur; M. I. Besana; Angelo Infantino; B. Riemann; German F. R. Sborlini; E. Bruna; E. Bruna; D. Saez de Jauregui; R. Patterson; Filippo Sala; Andrzej Siodmok; E. Palmieri; Marcello Abbrescia; Marcello Abbrescia; L. Deniau; David Olivier Jamin; V. Baglin; F. Cerutti; Shehu S. AbdusSalam; P. Costa Pinto;handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
European physical journal special topics 228(2), 261-623 (2019). doi:10.1140/epjst/e2019-900045-4 Published by Springer, Berlin ; Heidelberg
CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Springer Science and Business Media LLC Funded by:DFG, ANR | GC-INVAMOFECTDFG ,ANR| GC-INVAMOFECTAuthors: Cunze, Sarah; Koch, Lisa Katharina; Kochmann, Judith; Klimpel, Sven;Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Kishan Veerashekar; Halil Askan; Matthias Luther;doi: 10.3390/en13051286
Neighboring stand-alone hybrid microgrids with diesel generators (DGs) as well as grid-feeding photovoltaics (PV) and grid-forming battery storage systems (BSS) can be coupled to reduce fuel costs and emissions as well as to enhance the security of supply. In contrast to the research in control and small-signal rotor angle stability of microgrids, there is a significant lack of knowledge regarding the transient stability of off-grid hybrid microgrids in a cluster environment. Therefore, the large-signal rotor angle stability of pooled microgrids was assessed qualitatively and also quantitatively in this research work. Quantitative transient stability assessment (TSA) was carried out with the help of the—recently developed and validated—micro-hybrid method by combining time-domain simulations and transient energy function analyses. For this purpose, three realistic dynamic microgrids were modelled regarding three operating modes (island, interconnection, and cluster) as well as the conventional scenario “classical” and four hybrid scenarios (“storage”, “sun”, “sun & storage”, and “night”) regarding different instants of time on a tropical partly sunny day. It can be inferred that, coupling hybrid microgrids is feasible from the voltage, frequency, and also transient stability point of view. However, the risk of large-signal rotor angle instability in pooled microgrids is relatively higher than in islanded microgrids. Along with critical clearing times, new stability-related indicators such as system stability degree and corrected critical clearing times should be taken into account in the planning phase and in the operation of microgrids. In principle, a general conclusion concerning the best operating mode and scenario of the investigated microgrids cannot be drawn. TSA of pooled hybrid microgrids should be performed—on a regular basis especially in the grid operation—for different loading conditions, tie-line power flows, topologies, operating modes, and scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Doctoral thesis 2023Embargo end date: 15 May 2023Publisher:RWTH Aachen University Authors: Abdelshafy, Ali Ezzat Abdelhamid;The transformation towards carbon-neutral and circular economies and industrial systems is of utmost importance facing climate change and scarcity of resources. To tackle the resulting enormous planning and implementation tasks, there exist on the one hand very detailed bottom-up process models and roadmaps for specific technologies and companies, and on the other hand highly aggregated top-down approaches and scenarios for climate-neutral trajectories at global, EU and national scale. However, only few approaches so far specifically address the regional application level, which is of high importance for the implementation of car-bon-neutral and circular industrial systems because of the many intersectoral relations between companies and manifold links between material and energy flows within a region. This holds especially for the regional interrelations of energy and material intensive industries like steel, cement, or chemistry. Additionally, regional characteristics will have a strong impact on the design of new pipeline infrastructures for the transportation of hydrogen or CO2. Therefore, regional analyses and integrated approaches for modelling and assessment are required to overcome these gaps methods and applications. Against this background, the aim of this dissertation is to develop integrated modelling, evaluation and planning approaches for the transformation towards carbon-neutral and circular industrial systems and infrastructures with specific emphasis on solutions for the regional level. The dissertation serves to provide transparency on the development of material and energy flows over time, supports technology choice decisions based on techno-economic and environmental evaluations, and supports policy and management decisions on infrastructure and technology investments. The developed approaches have to regard for many requirements and challenges, i.e., approaches need to applicable at regional level, regard for the nexus between carbon neutrality and circular economy, incorporate intersectoral interdependencies between companies and material flows, be interdisciplinary in that they are able to regard for technical, economic, environmental as well as social aspects, consider spatial relations and regional networks, and are dynamic in that they regard for the transformation over time. These requirements and challenges are analysed and integrated via different methodological approaches and system boundaries. The dissertation specifically addresses the transformation of the metals and cement & construction sectors in North Rhine-Westphalia (NRW), a region that accounts for one third of the German cement and chemical production and two fifths of the steel production in Germany. Being a crucial hub for the heavy industries in Eu-rope, the state is responsible for one quarter of the annual GHG emissions in Germany, half of these emissions comes from the energy sector and approximately one fifth is generated by the regional industries. As the state is currently witnessing fundamental structural changes in the industrial sector, it is a suitable region for investigating the transformation process and demonstrating the respective methods. Moreover, the state can also represent the main features of other industrial regions in Germany and Europe. The dissertation consists of five parts. Part I presents the background, structure and region of interest, and dis-cusses the adopted methods and derived approaches. The next three parts (II – IV) encompass the cumulative dissertation. Herein, it is composed of nine peer-reviewed publications that address the two mentioned sectors (i.e. metals and cement & construction) via using different methods and system boundaries. Part II on the metals sector comprises three papers. Paper 1 addresses the industrial transformation in the steel industry by means of developing a hybrid model that defines and quantifies the changes in the regional and energy material flows in North Rhine-Westphalia. Paper 2 determines the causes of CO2 emissions during the production process of cast iron and steel and the mitigation potentials. Paper 3 presents a techno-economic and environmental (TEE) assessment to study the impact of increasing the share of secondary inputs (i.e. steel scrap) from an interdisciplinary perspective. Part III on the cement and construction industry contains four publications. Paper 4 studies the role of CCUS in decarbonizing the cement industry and discusses its necessity as well as the associated challenges. The paper is based on an extensive literature review and analyses the supply chains, the various options that cement producers have to mitigate their emissions and their techno-economic requirements, advantages, drawbacks, boundaries and challenges. Paper 5 aims at promoting a circular economy in the construction sector via presenting a novel model that estimates the regional supply and demand of secondary materials over time. Paper 6 focuses on the spatial aspects of carbonation as a specific CCU technology, and realizes a relationship between the distance and CO2 sequestration capacity in NRW via locational material flow analysis and an optimization model. Paper 7 enhances this analysis by using more data inputs and classifying the available materials into different categories, which results in more detailed analyses and outcomes. Part IV on the intersectoral impacts and infrastructure planning consists of two papers. Paper 8 focuses on the relationship between carbon neutrality and circular economy via an intersectoral energy and material flow analysis in NRW. Herein, a broad system boundary has been defined in order to comprehensively include a wide range of industrial value chains. Paper 9 presents an extensive analysis on the configurations and costs of the prospective CO2 network in Germany. Part V on the Conclusions & Outlook presents the main outcomes of the dissertation, and recommendations for future research activities. Methodologically, the derived approaches and frameworks are based on three fundamental methods A) Mate-rial Flow Analysis (MFA), B) integrated TEE assessment, and C) planning of optimal networks and infrastructures. A) The basic MFA methodology has been extended by integrating dimensions such as time, location, and process modelling. As a result, extended approaches such as regional intersectoral MFA, prospective MFA, locational MFA, and dynamic-locational MFA are developed and applied to practical planning case studies. B) Integrated TEE assessment is applied as a comprehensive approach to merge the relationship between the technical, economic and environmental performance. The derived framework is used to investigate and optimize the three aspects simultaneously. C) Approaches for planning of optimal networks and infrastructure are used to design the prospective infrastructures, specifically the CO2 pipeline network in Germany. Herein, an optimization model has been developed based on an extensive number of datasets and a scenario analysis has been also carried out to illustrate the impacts of different conditions. Overall, this dissertation succeeded in providing innovative modelling extensions and integrations, which have been used to investigate ongoing serious themes and address real industrial questions. The quantitative and qualitative analyses have achieved the dissertation’s goals and fulfilled the identified requirements. The presented case studies on the different industries and materials have demonstrated the effectiveness of the derived frameworks, which can be also used to solve other problems. Therefore, the dissertation is an added value to the academia and of high interest for the industrial sector and policymakers. For researchers, the presented models provide a basis for further studies and research. For the industrial sector and policymakers, the comprehensive analyses and conclusions can be very helpful in deriving regional strategies and roadmaps. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2023; Aachen : RWTH Aachen University 1 Online-Ressource : Illustrationen, Diagramme, Karten (2023). doi:10.18154/RWTH-2023-05379 = Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2023 Published by RWTH Aachen University, Aachen
Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityDoctoral thesis . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityDoctoral thesis . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 08 Apr 2024Publisher:Springer Science and Business Media LLC Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivRobert Rauschkolb; Solveig Franziska Bucher; Isabell Hensen; Antje Ahrends; Eduardo Fernández-Pascual; Katja Heubach; Desiree Jakubka; Borja Jiménez-Alfaro; Andreas König; Tomáš Koubek; Alexandra Kehl; Anzar A. Khuroo; Anja Lindstädter; Faizan Shafee; Tereza Mašková; Elena Platonova; Patrizia Panico; Carolin Plos; Richard Primack; Christoph Rosche; Manzoor A. Shah; Maria Sporbert; Albert-Dieter Stevens; Flavio Tarquini; Katja Tielbörger; Sabrina Träger; Vibekke Vange; Patrick Weigelt; Aletta Bonn; Martin Freiberg; Barbara Knickmann; Birgit Nordt; Christian Wirth; Christine Römermann;Abstract Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect the magnitude of biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species’ phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude, and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area, and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species indicated by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: DIGITAL.CSIChttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 31 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: DIGITAL.CSIChttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2017Publisher:Frontiers Media SA Takuya Kitaoka; Takeo Yamakawa; Mio Sakamoto; Hinomi Yoshida; Duc Chanh Tin Doan; Mau Chien Dang; Yusuke Shiratori; Quang Tuyen Tran;Fuel-flexible solid oxide fuel cell (SOFC) technologies are presently under study in a Vietnam-Japan international joint research project. The purpose of this project is to develop and demonstrate an SOFC-incorporated energy circulation system for the sustainable development of the Mekong Delta region. Lab-scale methane fermentation experiments in this study with a mixture of biomass feedstock collected in the Mekong Delta (shrimp pond sludge, bagasse, and molasses from sugar production) recorded biogas production yield over 400 L kgVS−1 with H2S concentration below 50 ppm level. This real biogas was directly supplied to an SOFC without any fuel processing such as desulfurization, methane enrichment and pre-reforming, and stable power generation was achieved by applying paper-structured catalyst (PSC) technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors: Odenthal, Christian; Steinmann, Wolf-Dieter; Zunft, Stefan;Abstract A unique large scale pilot plant of the CellFlux thermal energy storage concept is experimentally investigated. This storage concept consists of a regenerator type thermal energy storage volume, which is coupled to a finned tube heat exchanger by a circulating intermediate working fluid. The system investigated in this work operates at a temperature of 390 °C and uses air as intermediate working fluid which is conveyed by a centrifugal fan. The storage volume has a bed length of over ten meters and is of a novel design, where the air flows in horizontal direction. Since this approach could cause a flow maldistribution, a thorough analysis is of major interest for the accuracy of subsequent numerical simulations. The experiments reveal that the mass flow along the centerline can be up to 20% higher than the mean bulk flow. A significant maldistribution between top and bottom area, however, is not observed. As an alternative to the typically used rock filling, the storage volume is equipped with standard hollow bricks. These bricks are cost effective but do not have a well-defined shape. Thus, the predictability of the pressure drop by correlations found in the literature is unclear. It turns out that the measured pressure drop is evenly distributed in axial flow direction but generally higher than expected from the assumption of pure channel flow. Further experiments are conducted to validate the heat capacity of the bricks and to derive a correlation for the inner heat transfer between bricks and storage walls. Eventually, the aim of the experimental investigation is a general proof of concept as basis for the numerical investigation. Thus, all specifications of the plant and the storage material are provided. The plant is analyzed towards plausibility of heat losses, showing that heat losses can be predicted well within the given uncertainties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Karlsruhe Publicly fundedFunded by:EC | RI Impact PathwaysEC| RI Impact PathwaysGiancarlo Ferrera; Giancarlo Ferrera; T. P. Watson; Oliver Fischer; Oliver Fischer; S. Fiorendi; C. Bhat; Olivier Leroy; M. K. Yanehsari; V. Arı; Simone Bologna; R. Aleksan; S. Myers; Leonid Rivkin; G. Catalano; S. V. Furuseth; Nathaniel Craig; M. Ramsey-Musolf; M. Merk; H. J. He; J. Proudfoot; X. Jiang; S. Kowalski; H. Chanal; Roderik Bruce; Radja Boughezal; S. Atieh; D. Liberati; E. Leogrande; Fady Bishara; Fady Bishara; O. Panella; O. Panella; Jiayin Gu; Lance D. Cooley; Alexander Ball; Paolo Castelnovo; A. Blondel; P. Sphicas; F. Dordei; Samuele Mariotto; Samuele Mariotto; I. Bellafont; A. Abada; Peter Braun-Munzinger; K. J. Eskola; J. M. Valet; Maria Paola Lombardo; Maria Paola Lombardo; Ph. Lebrun; S. P. Das; H. J. Yang; Luc Poggioli; Leonel Ferreira; Abhishek M. Iyer; A. Saba; Giovanni Volpini; Giovanni Volpini; Valeria Braccini; Federico Carra; S. J. De Jong; Daniela Bortoletto; Ayres Freitas; Jürgen Reuter; T. Sian; T. Sian; T. Sian; M. Nonis; G. Vorotnikov; V. Yermolchik; S. Jadach; T. Marriott-Dodington; M. Widorski; Jac Perez; Sinan Kuday; Gianluigi Arduini; J. Cervantes; H. Duran Yildiz; Victor P. Goncalves; Anke-Susanne Müller; G. Rolandi; M. Demarteau; Marumi Kado; Marumi Kado; Michael Syphers; Ryu Sawada; T. Podzorny; Sara Khatibi; Colin Bernet; Yuji Enari; M. Morrone; Y. Dydyshka; Alessandro Polini; Alessandro Polini; J. B. De Vivie De Regie; V. Raginel; M. Panareo; Patrick Draper; Y. Bai; V. Guzey; I. Tapan; D. Woog; A. Crivellin; Andrea Bastianin; M. Zobov; Caterina Vernieri; A. Carvalho; S. Rojas-Torres; N. Pukhaeva; O. Bolukbasi; Guilherme Milhano; M. Mohammadi Najafabadi; Andreas Salzburger; J. Gutierrez; D. K. Hong; A. Apyan; Peter Skands; S. Bertolucci; S. Bertolucci; Masaya Ishino; M. A. Pleier; T. Hoehn; C. Bernini; S. Baird; H. D. Yoo; S. Holleis; Adarsh Pyarelal; Clemens Lange; J. L. Biarrotte; C. Marquet; Wojciech Kotlarski; J. Barranco García; V. Smirnov; Ingo Ruehl; F. Couderc; O. Grimm; Ricardo Gonçalo; Enrico Scomparin; Enrico Scomparin; Giulia Sylva; Oreste Nicrosini; Oreste Nicrosini; Alessandro Tricoli; R. Contino; Hubert Kroha; Y. Zhang; Roberto Ferrari; Roberto Ferrari; Giuseppe Montenero; T. Srivastava; Luca Silvestrini; Marco Andreini; I. Aichinger; Brennan Goddard; C. Andris; P. N. Ratoff; G. Zick; Jorg Wenninger; Andrea Malagoli; M. Moreno Llácer; C. Han; Mauro Chiesa; Livio Fanò; Livio Fanò; S. M. Gascon-Shotkin; B. Strauss; W. Da Silva; Jana Faltova; Berndt Müller; Berndt Müller; M. Kordiaczyńska; André Schöning; Francesco Giffoni; M. Aburaia; Chiu-Chung Young; D. Chanal; Holger Podlech; G. Yang; M. Skrzypek; W. M. Yao; M. Podeur; M. I. Besana; Angelo Infantino; B. Riemann; German F. R. Sborlini; E. Bruna; E. Bruna; D. Saez de Jauregui; R. Patterson; Filippo Sala; Andrzej Siodmok; E. Palmieri; Marcello Abbrescia; Marcello Abbrescia; L. Deniau; David Olivier Jamin; V. Baglin; F. Cerutti; Shehu S. AbdusSalam; P. Costa Pinto;handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
handle: 11588/836674 , 11250/2642528 , 20.500.14243/362389 , 2434/664406 , 10281/232564 , 20.500.11770/330880 , 10447/618977 , 11577/3306671 , 11390/1157812 , 2108/274956 , 11590/354973 , 11573/1306413 , 11392/2411003 , 11567/980502 , 11568/1028169 , 11589/210365 , 11384/82929 , 11585/723356 , 20.500.11769/392026 , 20.500.11767/92753 , 2158/1163225 , 11381/2892922
European physical journal special topics 228(2), 261-623 (2019). doi:10.1140/epjst/e2019-900045-4 Published by Springer, Berlin ; Heidelberg
CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019Full-Text: http://livrepository.liverpool.ac.uk/3051785/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: CORE (RIOXX-UK Aggregator)BOA - Bicocca Open ArchiveArticle . 2019Full-Text: https://boa.unimib.it/bitstream/10281/232564/1/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: BOA - Bicocca Open ArchiveArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio istituzionale della ricerca - Università di FerraraArticle . 2019License: CC BYArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYFull-Text: https://arpi.unipi.it/bitstream/11568/1028169/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2019License: CC BYArchivio istituzionale della Ricerca - Scuola Normale SuperioreArticle . 2019License: CC BYSISSA Digital LibraryArticle . 2019License: CC BYFull-Text: https://iris.sissa.it/bitstream/20.500.11767/92753/2/Abada2019_Article_FCC-eeTheLeptonCollider.pdfData sources: SISSA Digital LibraryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2019Full-Text: http://hdl.handle.net/2108/274956Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale dell'Università della CalabriaArticle . 2019Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2019Data sources: Archivio della Ricerca - Università degli Studi Roma TreIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2019Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2019Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Springer Science and Business Media LLC Funded by:DFG, ANR | GC-INVAMOFECTDFG ,ANR| GC-INVAMOFECTAuthors: Cunze, Sarah; Koch, Lisa Katharina; Kochmann, Judith; Klimpel, Sven;Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Kishan Veerashekar; Halil Askan; Matthias Luther;doi: 10.3390/en13051286
Neighboring stand-alone hybrid microgrids with diesel generators (DGs) as well as grid-feeding photovoltaics (PV) and grid-forming battery storage systems (BSS) can be coupled to reduce fuel costs and emissions as well as to enhance the security of supply. In contrast to the research in control and small-signal rotor angle stability of microgrids, there is a significant lack of knowledge regarding the transient stability of off-grid hybrid microgrids in a cluster environment. Therefore, the large-signal rotor angle stability of pooled microgrids was assessed qualitatively and also quantitatively in this research work. Quantitative transient stability assessment (TSA) was carried out with the help of the—recently developed and validated—micro-hybrid method by combining time-domain simulations and transient energy function analyses. For this purpose, three realistic dynamic microgrids were modelled regarding three operating modes (island, interconnection, and cluster) as well as the conventional scenario “classical” and four hybrid scenarios (“storage”, “sun”, “sun & storage”, and “night”) regarding different instants of time on a tropical partly sunny day. It can be inferred that, coupling hybrid microgrids is feasible from the voltage, frequency, and also transient stability point of view. However, the risk of large-signal rotor angle instability in pooled microgrids is relatively higher than in islanded microgrids. Along with critical clearing times, new stability-related indicators such as system stability degree and corrected critical clearing times should be taken into account in the planning phase and in the operation of microgrids. In principle, a general conclusion concerning the best operating mode and scenario of the investigated microgrids cannot be drawn. TSA of pooled hybrid microgrids should be performed—on a regular basis especially in the grid operation—for different loading conditions, tie-line power flows, topologies, operating modes, and scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Doctoral thesis 2023Embargo end date: 15 May 2023Publisher:RWTH Aachen University Authors: Abdelshafy, Ali Ezzat Abdelhamid;The transformation towards carbon-neutral and circular economies and industrial systems is of utmost importance facing climate change and scarcity of resources. To tackle the resulting enormous planning and implementation tasks, there exist on the one hand very detailed bottom-up process models and roadmaps for specific technologies and companies, and on the other hand highly aggregated top-down approaches and scenarios for climate-neutral trajectories at global, EU and national scale. However, only few approaches so far specifically address the regional application level, which is of high importance for the implementation of car-bon-neutral and circular industrial systems because of the many intersectoral relations between companies and manifold links between material and energy flows within a region. This holds especially for the regional interrelations of energy and material intensive industries like steel, cement, or chemistry. Additionally, regional characteristics will have a strong impact on the design of new pipeline infrastructures for the transportation of hydrogen or CO2. Therefore, regional analyses and integrated approaches for modelling and assessment are required to overcome these gaps methods and applications. Against this background, the aim of this dissertation is to develop integrated modelling, evaluation and planning approaches for the transformation towards carbon-neutral and circular industrial systems and infrastructures with specific emphasis on solutions for the regional level. The dissertation serves to provide transparency on the development of material and energy flows over time, supports technology choice decisions based on techno-economic and environmental evaluations, and supports policy and management decisions on infrastructure and technology investments. The developed approaches have to regard for many requirements and challenges, i.e., approaches need to applicable at regional level, regard for the nexus between carbon neutrality and circular economy, incorporate intersectoral interdependencies between companies and material flows, be interdisciplinary in that they are able to regard for technical, economic, environmental as well as social aspects, consider spatial relations and regional networks, and are dynamic in that they regard for the transformation over time. These requirements and challenges are analysed and integrated via different methodological approaches and system boundaries. The dissertation specifically addresses the transformation of the metals and cement & construction sectors in North Rhine-Westphalia (NRW), a region that accounts for one third of the German cement and chemical production and two fifths of the steel production in Germany. Being a crucial hub for the heavy industries in Eu-rope, the state is responsible for one quarter of the annual GHG emissions in Germany, half of these emissions comes from the energy sector and approximately one fifth is generated by the regional industries. As the state is currently witnessing fundamental structural changes in the industrial sector, it is a suitable region for investigating the transformation process and demonstrating the respective methods. Moreover, the state can also represent the main features of other industrial regions in Germany and Europe. The dissertation consists of five parts. Part I presents the background, structure and region of interest, and dis-cusses the adopted methods and derived approaches. The next three parts (II – IV) encompass the cumulative dissertation. Herein, it is composed of nine peer-reviewed publications that address the two mentioned sectors (i.e. metals and cement & construction) via using different methods and system boundaries. Part II on the metals sector comprises three papers. Paper 1 addresses the industrial transformation in the steel industry by means of developing a hybrid model that defines and quantifies the changes in the regional and energy material flows in North Rhine-Westphalia. Paper 2 determines the causes of CO2 emissions during the production process of cast iron and steel and the mitigation potentials. Paper 3 presents a techno-economic and environmental (TEE) assessment to study the impact of increasing the share of secondary inputs (i.e. steel scrap) from an interdisciplinary perspective. Part III on the cement and construction industry contains four publications. Paper 4 studies the role of CCUS in decarbonizing the cement industry and discusses its necessity as well as the associated challenges. The paper is based on an extensive literature review and analyses the supply chains, the various options that cement producers have to mitigate their emissions and their techno-economic requirements, advantages, drawbacks, boundaries and challenges. Paper 5 aims at promoting a circular economy in the construction sector via presenting a novel model that estimates the regional supply and demand of secondary materials over time. Paper 6 focuses on the spatial aspects of carbonation as a specific CCU technology, and realizes a relationship between the distance and CO2 sequestration capacity in NRW via locational material flow analysis and an optimization model. Paper 7 enhances this analysis by using more data inputs and classifying the available materials into different categories, which results in more detailed analyses and outcomes. Part IV on the intersectoral impacts and infrastructure planning consists of two papers. Paper 8 focuses on the relationship between carbon neutrality and circular economy via an intersectoral energy and material flow analysis in NRW. Herein, a broad system boundary has been defined in order to comprehensively include a wide range of industrial value chains. Paper 9 presents an extensive analysis on the configurations and costs of the prospective CO2 network in Germany. Part V on the Conclusions & Outlook presents the main outcomes of the dissertation, and recommendations for future research activities. Methodologically, the derived approaches and frameworks are based on three fundamental methods A) Mate-rial Flow Analysis (MFA), B) integrated TEE assessment, and C) planning of optimal networks and infrastructures. A) The basic MFA methodology has been extended by integrating dimensions such as time, location, and process modelling. As a result, extended approaches such as regional intersectoral MFA, prospective MFA, locational MFA, and dynamic-locational MFA are developed and applied to practical planning case studies. B) Integrated TEE assessment is applied as a comprehensive approach to merge the relationship between the technical, economic and environmental performance. The derived framework is used to investigate and optimize the three aspects simultaneously. C) Approaches for planning of optimal networks and infrastructure are used to design the prospective infrastructures, specifically the CO2 pipeline network in Germany. Herein, an optimization model has been developed based on an extensive number of datasets and a scenario analysis has been also carried out to illustrate the impacts of different conditions. Overall, this dissertation succeeded in providing innovative modelling extensions and integrations, which have been used to investigate ongoing serious themes and address real industrial questions. The quantitative and qualitative analyses have achieved the dissertation’s goals and fulfilled the identified requirements. The presented case studies on the different industries and materials have demonstrated the effectiveness of the derived frameworks, which can be also used to solve other problems. Therefore, the dissertation is an added value to the academia and of high interest for the industrial sector and policymakers. For researchers, the presented models provide a basis for further studies and research. For the industrial sector and policymakers, the comprehensive analyses and conclusions can be very helpful in deriving regional strategies and roadmaps. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2023; Aachen : RWTH Aachen University 1 Online-Ressource : Illustrationen, Diagramme, Karten (2023). doi:10.18154/RWTH-2023-05379 = Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2023 Published by RWTH Aachen University, Aachen
Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityDoctoral thesis . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityDoctoral thesis . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 08 Apr 2024Publisher:Springer Science and Business Media LLC Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivRobert Rauschkolb; Solveig Franziska Bucher; Isabell Hensen; Antje Ahrends; Eduardo Fernández-Pascual; Katja Heubach; Desiree Jakubka; Borja Jiménez-Alfaro; Andreas König; Tomáš Koubek; Alexandra Kehl; Anzar A. Khuroo; Anja Lindstädter; Faizan Shafee; Tereza Mašková; Elena Platonova; Patrizia Panico; Carolin Plos; Richard Primack; Christoph Rosche; Manzoor A. Shah; Maria Sporbert; Albert-Dieter Stevens; Flavio Tarquini; Katja Tielbörger; Sabrina Träger; Vibekke Vange; Patrick Weigelt; Aletta Bonn; Martin Freiberg; Barbara Knickmann; Birgit Nordt; Christian Wirth; Christine Römermann;Abstract Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect the magnitude of biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species’ phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude, and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area, and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species indicated by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: DIGITAL.CSIChttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 31 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1007/s00484-024-02621-9Data sources: DIGITAL.CSIChttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of BiometeorologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
