Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
28,362 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Embargo
  • DE
  • NL

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Stephan Struth; Antonio Hurtado; Bernd Stöcker;

    The starting event of the massive air ingress into the core of the HTR module reactor, classified as hypothetical incident, is the very fast depressurization of the primary circuit. Provided that the integrity of the reactor pressure vessel is not in question, a rupture of the connecting pressure vessel between reactor pressure vessel and steam generator vessel is the maximum possible leak cross-section. In this work it is investigated whether the components of the reactor pressure vessel are exposed by the depressurization process to mechanical loads which exceed the load limits. These loads are caused by two different events, the strong momentum change of the fluid and the local pressure differences, respectively. Due to the momentum change the bottom reflector receives the maximum load, whereby only 2% of the compressive strength of the graphite quality used there are reached. However, the load by local pressure differences is between passed volumes and in normal operation, not-passed volumes lead to high load values. A maximum pressure difference of 44.5 bar was calculated at the thermal top shield.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Engineering ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nuclear Engineering and Design
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Engineering ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nuclear Engineering and Design
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Li-Jun Cai; Istvan Erlich;

    Abstract This paper deals with the control of the series FACTS (Flexible AC Transmission Systems) devices for the coordination between their transient stability controller and POD (Power Oscillation Damping) controller in multi-machine power systems. The design aspects and their implementation in form of fuzzy-logic coordination controller are presented. Furthermore, ANFIS (Adaptive Neuro-Fuzzy Inference System) is employed for the training of the proposed fuzzy-logic controller. The local signals of the FACTS devices are applied to achieve the coordination objectives. Digital simulations of multi-machine power system subjected to a wide variety of disturbances validate the efficiency of this approach. The proposed control scheme is not only robust, but also simple and easy to be realized in power systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IFAC Proceedings Vol...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IFAC Proceedings Volumes
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IFAC Proceedings Vol...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IFAC Proceedings Volumes
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Christian Gerk; Monika Willert-Porada;

    ABSTRACTA novel design for a high temperature SOFC, based on lamellar electrode-electrolyte segments obtained by solidification of an oxidic eutectic melt on an electrolyte substrate is presented. Such “composite” electrodes contain NiO or MnO - 8Y-ZrO2 lamellae, which after reduction / oxidation yield electrode-electrolyte lamellae with 1–2 μm width and a vertical dimension of> 100 μm, depending upon the amount of eutectic melt solidified on a polycrystalline substrate. The nucleation of the eutectic on a polycrystalline substrate followed by a semi-directional crystallization of the two phases yields a gradient of 3-phase boundaries over the height of such an electrode, with the number of 3-phase boundaries increasing towards the substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MRS Proceedings
    Article . 1997 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      MRS Proceedings
      Article . 1997 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Jean-Pol Dodelet;
    Jean-Pol Dodelet
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Jean-Pol Dodelet in OpenAIRE
    orcid bw Vassili Glibin;
    Vassili Glibin
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Vassili Glibin in OpenAIRE
    orcid Gaixia Zhang;
    Gaixia Zhang
    ORCID
    Harvested from ORCID Public Data File

    Gaixia Zhang in OpenAIRE
    orcid Ulrike I. Kramm;
    Ulrike I. Kramm
    ORCID
    Harvested from ORCID Public Data File

    Ulrike I. Kramm in OpenAIRE
    +4 Authors

    The fast decay in PEM fuel cells of a highly active, high performance, but unstable Fe/N/C catalyst like our NC_Ar + NH3 follows a chemical, not an electrochemical, demetallation mechanism for its ORR active FeN4 sites in the catalyst micropores.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2021 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2021 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ferenc Horváth; A. Nádor; Andor Végh; Tamás Tóth; +7 Authors

    The Pannonian basin is an integral part of the convergence zone between the Eurasian and Nubian plates characterized by active subductions of oceanic and continental plates, and formation of backarc basins. The first part of this paper presents an overview of the evolution of the Alpine-Mediterranean region in order to understand the large scale crustal and upper mantle processes in and around the Pannonian basin, resulting a collage of terranes of Alpine and Adriatic origin. It will be followed by a summary of the history of sedimentation, volcanism and tectonic activity. As an illustration, three regional cross sections have been prepared on the base of seismic and borehole data. Reviewing current tectonic ideas and models, we come up with a speculative tectonic scenario depicting Alcapa and Tisza-Dacia as orogenic wedges detached from their mantle lithosphere in the Alpine and Adriatic/Dinaric collision zone during the Late Oligocene to Early Miocene. They suffered a dramatic thermal impact leading to crustal melting during extrusion, when these crustal flakes could have been directly superimposed on the asthenosphere in the Carpathian embayment. Since then, the large part of the Pannonian has been cooling and a new mantle lithosphere growing. Geothermal data show that the Pannonian basin with cessation of volcanic activity in the Late Miocene is still very hot and Miocene to Quaternary clastic basin fill, together with karstified Mesozoic carbonates form good geothermal reservoirs of regional extent. In addition to these gravity-driven aquifer systems, a strongly overpressured reservoir can be found below a regional pressure seal in synrift strata and fractured basement rocks. Eventually, we show maps of geothermal installations in the Pannonian basin and suggest that at the present level of knowledge and geophysical surveying it is easy to find additional resources, however proper water management is a critical issue to avoid harmful drawdown of the groundwater table.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geothermicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geothermics
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    237
    citations237
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geothermicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geothermics
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jussi Heinimö; Mirja Mikkilä; Virgilio Panapanaan; orcid Lassi Linnanen;
    Lassi Linnanen
    ORCID
    Harvested from ORCID Public Data File

    Lassi Linnanen in OpenAIRE
    +1 Authors

    PurposeThe purpose of this paper is to outline a comprehensive picture of the coverage of various certification schemes and sustainability principles relating to the entire value‐added chain of biomass and bioenergy and comparing them accordingly.Design/methodology/approachA tri‐dimensional approach (sustainability issues; technical biomass conversion routes; physical trade flows) was developed for testing the coverage of various sustainability dimensions in different phases of the value‐added chain with the chosen certification schemes and sustainability principles.FindingsUsing the tri‐dimensional approach, a comparison of the chosen schemes and principles demonstrated that the application of existing schemes and the development of new ones have placed a major emphasis on the primary production of biomass. Economic and social dimensions related to biofuels and bioenergy processing and trade were either emphasised less or they were covered inadequately. In view of this, the schemes sometimes seem to ignore that the utilisation of renewable energy as such guarantee no positive or neutral climate impact and may not be economically sustainable, especially when bioenergy can often be more expensive than energy generated from fossil energy sources.Originality/valueThe analysis showed that the tri‐dimensional model is an applicable framework that could facilitate policy makers to formulate policies that comprehensively take into consideration the various sustainability dimensions throughout the entire value‐added chain, now and in the future. It can be applied to the future outlining and completion of certification schemes and sustainability principles for biomass and bioenergy, as well as in the testing of their applicability in the implementation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Energy Sector Management
    Article . 2009 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim
    12
    citations12
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Energy Sector Management
      Article . 2009 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wolf, Benjamin; orcid Zheng, Xunhua;
    Zheng, Xunhua
    ORCID
    Harvested from ORCID Public Data File

    Zheng, Xunhua in OpenAIRE
    Bruggemann, Nicolas; Chen, Weiwei; +6 Authors

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2010
    Nature
    Article . 2009
    addClaim
    262
    citations262
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2010
      Nature
      Article . 2009
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rik W. De Doncker; Abderrezak Hammouche; Eckhard Karden;

    This paper reports on laboratory studies into the ac impedance spectra of nickel–metal hydride and nickel–cadmium batteries, aiming at finding out possible correlation between electrical parameters, extracted directly from the high frequency region, and the battery state-of-charge (SoC). Impedance diagrams were recorded immediately after interrupting the dc charge, or discharge, current. The study revealed that the series resonance frequency, at which the dynamic cell behavior switches from an inductive character (Z″>0) to a capacitive one (Z″<0), varied monotonously as a function of state-of-charge. This behavior was reproducible after intermittent charge and discharge. Half-cell measurements were also conducted to associate the cell impedance with either processes occurring at the positive or negative plates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    74
    citations74
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Petr Lichtneger; Bodo Ruck;

    Abstract Every day and innumerably, road vehicles of different types pass flat roadside-placed elements like stable or temporary traffic signs, noise barriers, charge devices, etc. The elements are exposed to a vehicle-specific flow and pressure field, i.e. to transient loads. In order to quantify the involved phenomena, full-scale experiments were performed for six different vehicle types and three sizes of square plates, which were aligned in three different configurations with respect to the vehicle׳s track. For the measurement of loads effecting the plate, the pressure multi-tapping technique was implemented with high temporal and spatial resolution. The experiments delivered a broad database for the proper quantification of vehicle induced loads on flat elements as a function of vehicle type, vehicle velocity and passing distance to the plate, element size as well as spatial plate alignment with respect to the vehicle.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Wind Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Wind Engineering and Industrial Aerodynamics
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Wind Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Wind Engineering and Industrial Aerodynamics
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Hever Alcahuaman;
    Hever Alcahuaman
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Hever Alcahuaman in OpenAIRE
    orcid Juan Camilo Lopez;
    Juan Camilo Lopez
    ORCID
    Harvested from ORCID Public Data File

    Juan Camilo Lopez in OpenAIRE
    orcid Daniel Dotta;
    Daniel Dotta
    ORCID
    Harvested from ORCID Public Data File

    Daniel Dotta in OpenAIRE
    orcid Marcos J. Rider;
    Marcos J. Rider
    ORCID
    Harvested from ORCID Public Data File

    Marcos J. Rider in OpenAIRE
    +1 Authors

    With the recent advancements in power electronics for wind turbines (WTs) and increasing penetration of wind energy, wind power plants (WPP) have become necessary contributors of reactive power support for the bulk power system. Balancing reactive power support with individual WT operating requirements in a cost-effective manner is a challenge for WPP designers. In this paper, we present a methodology to optimize the WPP reactive power capability as seen from the point of common coupling (PCC), accounting for steady-state operating capabilities of the WPP equipment. Thus, the proposed methodology determines the configuration of the tap-changing transformers within the WPP that maximizes the amount of reactive power the WPP can either consume or inject to the network, considering uncertain levels of wind power generation and voltage magnitudes at the PCC. The optimized reactive power capability (ORPC) problem is initially formulated as a mixed-integer nonlinear programming (MINLP) model. Then, a set of efficient linearization techniques are used to obtain a mixed-integer linear programming (MILP) model that can be solved via off-the-shelf mathematical programming solvers. Results demonstrate that the proposed MILP model is a scalable, flexible and accurate method to maximize the reactive power capability of WPP.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Sustainable Energy
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Sustainable Energy
      Article . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim