- home
- Advanced Search
- Energy Research
- CH
- DE
- PL
- Research Collection
- Energy Research
- CH
- DE
- PL
- Research Collection
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Elsevier BV Authors: Ana Vallejo Vitaller;Ueli Angst;
Ueli Angst
Ueli Angst in OpenAIREBernhard Elsener;
Bernhard Elsener;Bernhard Elsener
Bernhard Elsener in OpenAIRELaboratory corrosion and scaling testing of metallic materials exposed in high temperature and pressure environments generally involves complex, multi-instrument measurement setups. Here, we present a setup including an autoclave that is instrumented for in-situ electrochemical testing and that contains a ZrO2-based solid-state pH electrode and devices for temperature control and solution stirring. We show results highlighting the importance of adequate pre-calibration of the pH measurement, due to the hysteresis depending on temperature sweep. Additionally, we illustrate how interfacing the autoclave and the electrochemical cell to measuring and controlling instruments, using different data communication interfaces, can create ground loops. These ground loop interferences can introduce significant errors in the measurement, such as a potential shift of >100 mV. In complex, multi-instrument setups, a complete understanding of ground loops may often be difficult. Thus, we recommend systematic checks to identify the ground loops and we propose measures to avoid them. Measurement, 155 ISSN:0263-2241 ISSN:1873-412X
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.measurement.2020.107537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.measurement.2020.107537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Embargo end date: 15 Jun 2017 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Phenotypic Selection and ...SNSF| Phenotypic Selection and Quantitative Evolutionary Responses in Immune Defence Traits in NatureAuthors:Otto Seppälä;
Otto Seppälä; Katri Seppälä; Katja Leicht; +1 AuthorsOtto Seppälä
Otto Seppälä in OpenAIREOtto Seppälä;
Otto Seppälä; Katri Seppälä; Katja Leicht; Katja Leicht;Otto Seppälä
Otto Seppälä in OpenAIREBackground On-going global climate change poses a serious threat for natural populations unless they are able to evolutionarily adapt to changing environmental conditions (e.g. increasing average temperatures, occurrence of extreme weather events). A prerequisite for evolutionary change is within-population heritable genetic variation in traits subject to selection. In relation to climate change, mainly phenological traits as well as heat and desiccation resistance have been examined for such variation. Therefore, it is important to investigate adaptive potential under climate change conditions across a broader range of traits. This is especially true for life-history traits and defences against natural enemies (e.g. parasites) since they influence organisms’ fitness both directly and through species interactions. We examined the adaptive potential of fitness-related traits and their responses to heat waves in a population of a freshwater snail, Lymnaea stagnalis. We estimated family-level variation and covariation in life history (size, reproduction) and constitutive immune defence traits [haemocyte concentration, phenoloxidase (PO)-like activity, antibacterial activity of haemolymph] in snails experimentally exposed to typical (15 °C) and heat wave (25 °C) temperatures. We also assessed variation in the reaction norms of these traits between the treatments. Results We found that at the heat wave temperature, snails were larger and reproduced more, while their immune defence was reduced. Snails showed high family-level variation in all examined traits within both temperature treatments. The only negative genetic correlation (between reproduction and antibacterial activity) appeared at the high temperature. However, we found no family-level variation in the responses of most examined traits to the experimental heat wave (i.e. largely parallel reaction norms between the treatments). Only the reduction of PO-like activity when exposed to the high temperature showed family-level variation, suggesting that the cost of heat waves may be lower for some families and could evolve under selection. Conclusion Our results suggest that there is genetic potential for adaptation within both thermal environments and that trait evolution may not be strongly affected by trade-offs between them. However, rare differences in thermal reaction norms across families indicate limited evolutionary potential in the responses of snails to changing temperatures during extreme weather events. BMC Evolutionary Biology, 17 ISSN:1471-2148
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12862-017-0988-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12862-017-0988-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2023Embargo end date: 26 May 2023 SwitzerlandPublisher:ETH Zurich Authors: Ma, Danling; Gregor, Luke; Gruber, Nicolas;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000613669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000613669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Embargo end date: 28 Apr 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:NSERC, SNSF | Innovative Computational ...NSERC ,SNSF| Innovative Computational Methods for Ultra-Fast Simulations of Coupled Physical and Chemical Processes Using Machine Learning and GPU Parallel ComputingIn a forward chemical equilibrium problem (FCEP), the state of minimum Gibbs energy for a chemical system is sought, in which temperature, pressure, elemental amounts, and thermodynamic model parameters are prescribed. We herein present a mathematical framework for characterizing and solving inverse chemical equilibrium problems (ICEP), a class of problems for which one or more of those prescribed conditions in a FCEP are unknown in advance. In an ICEP, complementary conditions must be imposed, which are referred to here as equilibrium constraints. Examples of ICEPs include those in which a certain property is known at equilibrium (e.g., volume is specified instead of pressure; enthalpy is specified instead of temperature; pH is specified instead of the amount of element H). The equilibrium constraints may also be specified by equations that govern the relationship between several equilibrium properties (e.g., the equations relating temperature, pressure, density, energy, and velocity of the gases produced during the detonation of an explosive). Chemical Engineering Science, 252 ISSN:0009-2509
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2021.117162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2021.117162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 08 Feb 2023 SwitzerlandPublisher:ETH Zurich Hörtnagl, Lukas; Buchmann, Nina; Meier, Philip; Gharun, Mana; Baur, Thomas; Eugster, Werner; Feigenwinter, Iris;- EddyPro v6 and v7 for flux calculations [https://www.licor.com/env/products/eddy_covariance/eddypro] - bico for the conversion of binary raw data files to ASCII (2013-2016, 2020-2022) [https://gitlab.ethz.ch/flux/bico] - fluxrun for the flux calculation using EddyPro (2013-2016, 2020-2022) [https://gitlab.ethz.ch/flux/fluxrun] - Various versions of FCT (flux calculation using EddyPro) were used for years 1997-2004 and 2017-2019 [https://gitlab.ethz.ch/holukas/fct-flux-calculation-tool] - scop v0.1 (self-heating correction for open-path IRGAs) for the self-heating correction of IRGA75 fluxes [https://gitlab.ethz.ch/holukas/scop] - diive v0.21.0 (legacy version) for file merging, quality control, storage correction, outlier removal [https://gitlab.ethz.ch/diive/diive-legacy/-/tree/v0.21.0] - ReddyProc v1.2.2 for application of the constant ustar threshold, MDS gap-filliing and partitioning, in R Studio v1.3.959 [https://cran.r-project.org/web/packages/REddyProc/index.html]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000597213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000597213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:ETH Zurich Authors: Kreil, Agnes Sophie;NVivo
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000406764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000406764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Mengshuo Jia;
Mengshuo Jia
Mengshuo Jia in OpenAIREGabriela Hug;
Gabriela Hug
Gabriela Hug in OpenAIREYifan Su;
Yifan Su
Yifan Su in OpenAIREChen Shen;
Chen Shen
Chen Shen in OpenAIREGiven the increased percentage of wind power in power systems, chance-constrained optimal power flow (CC-OPF) calculation, as a means to take wind power uncertainty into account with a guaranteed security level, is being promoted. Compared to the local CC-OPF within a regional grid, the global CC-OPF of a multi-regional interconnected grid is able to coordinate across different regions and therefore improve the economic efficiency when integrating high percentage of wind power generation. In this global problem, however, multiple regional independent system operators (ISOs) participate in the decision-making process, raising the need for distributed but coordinated approaches. Most notably, due to regulation restrictions, commercial interest, and data security, regional ISOs may refuse to share confidential information with others, including generation cost, load data, system topologies, and line parameters. But this information is needed to build and solve the global CC-OPF spanning multiple areas. To tackle these issues, this paper proposes a distributed CC-OPF method with confidentiality preservation, which enables regional ISOs to determine the optimal dispatchable generations within their regions without disclosing confidential data. This method does not require parameter tunings and will not suffer from convergence challenges. Results from IEEE test cases show that this method is highly accurate.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Oct 2016 SwitzerlandPublisher:Elsevier BV Authors: Klaus, Valentin; id_orcid0000-0002-7469-6800;Hölzel, Norbert;
Prati, Daniel; Schmitt, Barbara; +6 AuthorsHölzel, Norbert
Hölzel, Norbert in OpenAIREKlaus, Valentin; id_orcid0000-0002-7469-6800;Hölzel, Norbert;
Prati, Daniel; Schmitt, Barbara;Hölzel, Norbert
Hölzel, Norbert in OpenAIRESchöning, Ingo;
Schöning, Ingo
Schöning, Ingo in OpenAIRESchrumpf, Marion;
Schrumpf, Marion
Schrumpf, Marion in OpenAIRESolly, Emily F.;
Hänsel, Falk; Fischer, Markus;Solly, Emily F.
Solly, Emily F. in OpenAIREKleinebecker, Till;
Kleinebecker, Till
Kleinebecker, Till in OpenAIRELand-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ13C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier 13C due to closing stomata leading to an enrichment of 13C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ13C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ13C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ13C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 SwitzerlandPublisher:The Electrochemical Society Authors:Nils Wenzler;
Sebastian Rief; Sven Linden; Fabian Biebl; +6 AuthorsNils Wenzler
Nils Wenzler in OpenAIRENils Wenzler;
Sebastian Rief; Sven Linden; Fabian Biebl; Samuel Rütsche; Ilona Glatt; Anja Streit; Raphael Zahn; Mathias Fingerle;Nils Wenzler
Nils Wenzler in OpenAIREVanessa Wood;
Vanessa Wood
Vanessa Wood in OpenAIREMost commercially used electrode materials contract and expand upon cycling. This change in volume influences the microstructure of the cell stack, which in turn impacts a range of performance parameters. Since direct observation of these microstructural changes with operando experiments is challenging and time intensive, a simulation tool that takes a real or artificially generated 3D microstructure and captures the volumetric changes in a cell during cycling would be valuable to enable rapid understanding of the impact of material choice, electrode and cell design, and operating conditions on the microstructural changes and identification of sources of mechanically-driven cell aging. Here, we report the development and verification of such a 3D electrochemical-mechanical tool, and provide an example use-case. We validate the tool by simulating the microstructural evolution of a graphite anode and a Li(Ni,Mn,Co)O2 cathode during cycling and comparing the results to X-ray tomography datasets of these electrodes taken during cycling. As an example use case for such a simulation tool, we explore how different volumetric expansion behaviors of the cathode material impact strain in the cell stack, illustrating how the material selection and its operation impact the mechanical behavior inside a cell.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb5c9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb5c9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:ETH Zurich Blagojević, Jovan; Peleg, Nadav; Athanasoios, Paschalis; Marra, Francesco; Molnar, Peter; id_orcid0000-0001-6437-4931;In this study we present a new methodology for obtaining present and future Intensity-Duration-Frequency (IDF) curves from global precipitation and climate datasets by combining stochastic rainfall modelling and climate projection based adjustments of the rainfall frequency-intensity relations. With a warming climate, large regions of the world are projected to experience an intensification of extreme rainfall events. This phenomenon is particularly pronounced in the tropical belt, where temperature-rainfall scaling rates have been observed to deviate from the commonly referenced Clausius-Clapeyron (CC) relationship of approximately 7% rainfall intensification per degree Celsius increase. In some cases, scaling rates have reached 2 to 3 times the CC value, while in other instances, no scaling has been observed. At the same time, these tropical regions are expected to experience significant population growth and urbanization in the near future, highlighting the need for a deeper understanding of rainfall intensity-frequency relationships and their projected changes to address rainfall-related hazards. Global precipitation datasets (eg. CMORPH, GSMaP or MERRA2), often derived from satellite observations and/or coarse-scale climate modelling, provide an accessible means for rainfall-hazard risk related studies in data-scarce regions. However, these datasets tend to missrepresent the short-duration, high-intensity rainfall events, especially those lasting one hour or less, and which belong to the tails of the distributions (i.e., return levels higher than 30-year). We introduce a methodology for estimating present IDF curves using openly available global datasets and then fitting a joint distribution rainfall-magnitude-temperature model to make predictions for the future IDF curves, based on projected dew point temperature changes from climate models. In the first step, we use high temporal resolution satellite remote sensing rainfall data (GSMaP) to train a stochastic rainfall generator model - the point process Bartlet-Lewis model. The ensemble data generated using the rainfall simulator is used to develop more accurate present climate IDF curves. In the next step, using the dew point temperature as a covariate for modelling the rainfall intensity and adapting the TENAX model procedure, we fit a temperature-dependent rainfall intensity magnitude model to the present climate IDF distribution. The fitting procedure is conducted based on the present climate dew point temperature distribution and the observed rainfall-temperature scaling. Using this fitted model, we then use future-climate dew point temperature distributions, combined with the projected number of rainy days, to construct future climate IDF curves. Our findings demonstrate that the proposed methodology produces IDF curves with greater accuracy compared to those derived directly from raw global rainfall datasets. Furthermore, future rainfall intensification appears to be highly spatially variable in the tropics, highlighting the importance of site-specific modeling and local measurements and predictions. ZHydro2024 - Abstract Booklet
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000710205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000710205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu