- home
- Advanced Search
- Energy Research
- DE
- Energy Research
- DE
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society Yuze Hou; Yuze Hou; Xing Li; Nada Zamel; Qing Du; Kui Jiao;Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/abc30a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/abc30a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yuze Hou; Sebastian Prass; Xing Li; Qing Du; Kui Jiao; Nada Zamel;AbstractA pore-scale contamination model is developed to resolve the physicochemical processes in the anode catalyst layer for a deeper insight into the hydrogen sulfide (H2S) contamination mechanism. The present model is based on lattice Boltzmann method (LBM) and a novel iteration algorithm is coupled to overcome the time-scale issue in LBM which can extend its application. The microstructure of CL is stochastically reconstructed considering the presence of carbon, Pt, ionomer, and pores. The proposed model is validated by comparing the experimental data and can accurately predict the effect of H2S contamination on performance with time. The results show that the fuel cell performance is not sensitive to the anode Pt loading under the clean fuel condition as the hydrogen oxidation reaction is easy to activate. However, higher Pt loading can effectively prolong the operation time under the H2S contamination by providing a larger buffer reactive area and a lower H2S concentration condition. Furthermore, the H2S contamination in the fuel gas should be strictly restricted as it directly affects the poisoning rate and significantly affects the operation time. Graphical abstract Physicochemical processes in the ACL with reactant transport through micro porous layer (MPL) to active Pt sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12678-021-00664-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12678-021-00664-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Electrochemical Society Yuze Hou; Yuze Hou; Xing Li; Nada Zamel; Qing Du; Kui Jiao;Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/abc30a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/abc30a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yuze Hou; Sebastian Prass; Xing Li; Qing Du; Kui Jiao; Nada Zamel;AbstractA pore-scale contamination model is developed to resolve the physicochemical processes in the anode catalyst layer for a deeper insight into the hydrogen sulfide (H2S) contamination mechanism. The present model is based on lattice Boltzmann method (LBM) and a novel iteration algorithm is coupled to overcome the time-scale issue in LBM which can extend its application. The microstructure of CL is stochastically reconstructed considering the presence of carbon, Pt, ionomer, and pores. The proposed model is validated by comparing the experimental data and can accurately predict the effect of H2S contamination on performance with time. The results show that the fuel cell performance is not sensitive to the anode Pt loading under the clean fuel condition as the hydrogen oxidation reaction is easy to activate. However, higher Pt loading can effectively prolong the operation time under the H2S contamination by providing a larger buffer reactive area and a lower H2S concentration condition. Furthermore, the H2S contamination in the fuel gas should be strictly restricted as it directly affects the poisoning rate and significantly affects the operation time. Graphical abstract Physicochemical processes in the ACL with reactant transport through micro porous layer (MPL) to active Pt sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12678-021-00664-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12678-021-00664-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu