- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSource
Organization
- Energy Research
- DE
- Energy Research
- DE
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Royal Society of Chemistry (RSC) Zhen Su; Haobo Li; Astha Sharma; Chuan Zhao; Kylie R. Catchpole; Siva Krishna Karuturi; Hongjun Chen; Karsten Reuter; Karsten Reuter; Di Yan; Fiona J. Beck; Doudou Zhang; Antonio Tricoli; Yuan Wang; Asim Riaz; Wensheng Liang; Kaushal Vora;doi: 10.1039/d1ee02013g
Direct synthesis of Ni3N/Ni catalyst enriched with N-vacancies using one-step reactive magnetron sputtering with enhanced performance for the hydrogen evolution reaction in photoelectrochemical cells and electrolysers.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee02013g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 1% influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee02013g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Review 2021 Germany, Spain, Switzerland, Spain, United KingdomPublisher:Authorea, Inc. Funded by:, DFG | Synthetic Carbon Allotrop..., EC | PEROXIS +1 projects[no funder available] ,DFG| Synthetic Carbon Allotropes ,EC| PEROXIS ,NSF| Invisible Luminescent Solar ConcentratorsMohammad Khaja Nazeeruddin; Kylie R. Catchpole; Hin-Lap Yip; Nikos Kopidakis; Jens Hauch; Osbel Almora; Osbel Almora; Christoph J. Brabec; Fei Guo; René A. J. Janssen; Jenny Nelson; Eva L. Unger; Anita Ho-Baillie; David B. Mitzi; Henry J. Snaith; T. Jesper Jacobsson; T. Jesper Jacobsson; Richard R. Lunt; Yongfang Li; Ulrich W. Paetzold; Uwe Rau; Thomas Kirchartz; Thomas Kirchartz; Christian Berger; Sule Erten-Ela; Lídice Vaillant-Roca; Guillermo C. Bazan; Nam-Gyu Park; Jie Min; Jie Min; Derya Baran; Ana Flávia Nogueira; Maria Antonietta Loi; Carlos I. Cabrera; Xavier Mathew; Barry P. Rand; Michael D. McGehee; Michael D. McGehee;Following the 1 release of the “Emerging PV reports” , the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2020. Updated graphs, tables and analyses are provided with several performance parameters, e.g. power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 2 instalment of the“Emerging PV reports” extends the scope towards tandem solar cells and presents the current state of the art in tandem solar cell performance for various material combinations.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/96769Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IRepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.163111075.58012093/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/96769Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IRepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.163111075.58012093/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, GermanyPublisher:Hindawi Limited Chog Barugkin; Ulrich W. Paetzold; Kylie R. Catchpole; Angelika Basch; Reinhard Carius;handle: 1885/153267
We report on the prototyping and development of a highly reflective dielectric back reflector for application in thin-film solar cells. The back reflector is fabricated by Snow Globe Coating (SGC), an innovative, simple, and cheap process to deposit a uniform layer of TiO2particles which shows remarkably high reflectance over a broad spectrum (average reflectance of 99% from 500 nm to 1100 nm). We apply the highly reflective back reflector to tandem thin-film silicon solar cells and compare its performance with conventional ZnO:Al/Ag reflector. By using SGC back reflector, an enhancement of 0.5 mA/cm2in external quantum efficiency of the bottom solar cell and an absolute value of 0.2% enhancement in overall power conversion efficiency are achieved. We also show that the increase in power conversion efficiency is due to the reduction of parasitic absorption at the back contact; that is, the use of the dielectric reflector avoids plasmonic losses at the reference ZnO:Al/Ag back reflector. The Snow Globe Coating process is compatible with other types of solar cells such as crystalline silicon, III–V, and organic photovoltaics. Due to its cost effectiveness, stability, and excellent reflectivity above a wavelength of 400 nm, it has high potential to be applied in industry.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153267Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2016/7390974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153267Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2016/7390974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Authorea, Inc. Funded by:NSF | Invisible Luminescent Sol..., DFG | Synthetic Carbon Allotrop...NSF| Invisible Luminescent Solar Concentrators ,DFG| Synthetic Carbon AllotropesOsbel Almora; Derya Baran; Guillermo C. Bazan; Carlos I. Cabrera; Kylie Catchpole; Sule Erten‐Ela; Fei Guo; Jens Hauch; Anita Ho‐Baillie; T. Jesper Jacobsson; René A. J. Janssen; Thomas Kirchartz; Nikos Kopidakis; Yongfang Li; Maria Antonietta Loi; Richard R. Lunt; Xavier Mathew; Michael D. McGehee; Jie Min; David B. Mitzi; Mohammad Khaja Nazeeruddin; Jenny Nelson; Ana Flávia Nogueira; Ulrich W. Paetzold; Nam‐Gyu Park; Barry P. Rand; Uwe Rau; Henry J. Snaith; Eva Unger; Lídice Vaillant‐Roca; Hin‐Lap Yip; Christoph J. Brabec;Emerging photovoltaics (PVs), focuses on a variety of applications complementing large scale electricity generation. For instance, organic, dye-sensitized and some perovskite solar cells are considered in building integration, greenhouses, wearable and indoors, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview over the state-of-the-art performance for these systems and applications. Two important resources for record research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley-Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield (STEY) is included as an analysis parameter among state-of-the-art emerging PVs.
https://papers.cociw... arrow_drop_down https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.161133682.20483533/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://papers.cociw... arrow_drop_down https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.161133682.20483533/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Switzerland, AustraliaPublisher:American Chemical Society (ACS) Daniel A. Jacobs; Malte Langenhorst; Florent Sahli; Bryce S. Richards; Thomas P. White; Christophe Ballif; Kylie R. Catchpole; Ulrich W. Paetzold;The remarkable recent progress in perovskite photovoltaics affords a novel opportunity to advance the power conversion efficiency of market-dominating crystalline silicon (c-Si) solar cells. A severe limiting factor in the development of perovskite/c-Si tandems to date has been their inferior light-harvesting ability compared to single-junction c-Si solar cells, but recent innovations have made impressive headway on this front. Here, we provide a quantitative perspective on future steps to advance perovskite/c-Si tandem photovoltaics from a light-management point of view, addressing key challenges and available strategies relevant to both the 2-terminal and 4-terminal perovskite/c-Si tandem architectures. In particular, we discuss the challenge of achieving low optical reflection in 2-terminal cells, optical shortcomings in state-of-the-art devices, the impact of transparent electrode performance, and a variety of factors which influence the optimal bandgap for perovskite top-cells. Focused attention in each of these areas will be required to make the most of the tandem opportunity.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/164022Data sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.8b03721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/164022Data sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.8b03721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Royal Society of Chemistry (RSC) Zhen Su; Haobo Li; Astha Sharma; Chuan Zhao; Kylie R. Catchpole; Siva Krishna Karuturi; Hongjun Chen; Karsten Reuter; Karsten Reuter; Di Yan; Fiona J. Beck; Doudou Zhang; Antonio Tricoli; Yuan Wang; Asim Riaz; Wensheng Liang; Kaushal Vora;doi: 10.1039/d1ee02013g
Direct synthesis of Ni3N/Ni catalyst enriched with N-vacancies using one-step reactive magnetron sputtering with enhanced performance for the hydrogen evolution reaction in photoelectrochemical cells and electrolysers.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee02013g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 1% influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee02013g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Review 2021 Germany, Spain, Switzerland, Spain, United KingdomPublisher:Authorea, Inc. Funded by:, DFG | Synthetic Carbon Allotrop..., EC | PEROXIS +1 projects[no funder available] ,DFG| Synthetic Carbon Allotropes ,EC| PEROXIS ,NSF| Invisible Luminescent Solar ConcentratorsMohammad Khaja Nazeeruddin; Kylie R. Catchpole; Hin-Lap Yip; Nikos Kopidakis; Jens Hauch; Osbel Almora; Osbel Almora; Christoph J. Brabec; Fei Guo; René A. J. Janssen; Jenny Nelson; Eva L. Unger; Anita Ho-Baillie; David B. Mitzi; Henry J. Snaith; T. Jesper Jacobsson; T. Jesper Jacobsson; Richard R. Lunt; Yongfang Li; Ulrich W. Paetzold; Uwe Rau; Thomas Kirchartz; Thomas Kirchartz; Christian Berger; Sule Erten-Ela; Lídice Vaillant-Roca; Guillermo C. Bazan; Nam-Gyu Park; Jie Min; Jie Min; Derya Baran; Ana Flávia Nogueira; Maria Antonietta Loi; Carlos I. Cabrera; Xavier Mathew; Barry P. Rand; Michael D. McGehee; Michael D. McGehee;Following the 1 release of the “Emerging PV reports” , the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2020. Updated graphs, tables and analyses are provided with several performance parameters, e.g. power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 2 instalment of the“Emerging PV reports” extends the scope towards tandem solar cells and presents the current state of the art in tandem solar cell performance for various material combinations.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/96769Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IRepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.163111075.58012093/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/96769Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IRepositori Institucional de la Universitat Jaume IArticle . 2021License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.163111075.58012093/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, GermanyPublisher:Hindawi Limited Chog Barugkin; Ulrich W. Paetzold; Kylie R. Catchpole; Angelika Basch; Reinhard Carius;handle: 1885/153267
We report on the prototyping and development of a highly reflective dielectric back reflector for application in thin-film solar cells. The back reflector is fabricated by Snow Globe Coating (SGC), an innovative, simple, and cheap process to deposit a uniform layer of TiO2particles which shows remarkably high reflectance over a broad spectrum (average reflectance of 99% from 500 nm to 1100 nm). We apply the highly reflective back reflector to tandem thin-film silicon solar cells and compare its performance with conventional ZnO:Al/Ag reflector. By using SGC back reflector, an enhancement of 0.5 mA/cm2in external quantum efficiency of the bottom solar cell and an absolute value of 0.2% enhancement in overall power conversion efficiency are achieved. We also show that the increase in power conversion efficiency is due to the reduction of parasitic absorption at the back contact; that is, the use of the dielectric reflector avoids plasmonic losses at the reference ZnO:Al/Ag back reflector. The Snow Globe Coating process is compatible with other types of solar cells such as crystalline silicon, III–V, and organic photovoltaics. Due to its cost effectiveness, stability, and excellent reflectivity above a wavelength of 400 nm, it has high potential to be applied in industry.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153267Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2016/7390974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153267Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2016/7390974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Authorea, Inc. Funded by:NSF | Invisible Luminescent Sol..., DFG | Synthetic Carbon Allotrop...NSF| Invisible Luminescent Solar Concentrators ,DFG| Synthetic Carbon AllotropesOsbel Almora; Derya Baran; Guillermo C. Bazan; Carlos I. Cabrera; Kylie Catchpole; Sule Erten‐Ela; Fei Guo; Jens Hauch; Anita Ho‐Baillie; T. Jesper Jacobsson; René A. J. Janssen; Thomas Kirchartz; Nikos Kopidakis; Yongfang Li; Maria Antonietta Loi; Richard R. Lunt; Xavier Mathew; Michael D. McGehee; Jie Min; David B. Mitzi; Mohammad Khaja Nazeeruddin; Jenny Nelson; Ana Flávia Nogueira; Ulrich W. Paetzold; Nam‐Gyu Park; Barry P. Rand; Uwe Rau; Henry J. Snaith; Eva Unger; Lídice Vaillant‐Roca; Hin‐Lap Yip; Christoph J. Brabec;Emerging photovoltaics (PVs), focuses on a variety of applications complementing large scale electricity generation. For instance, organic, dye-sensitized and some perovskite solar cells are considered in building integration, greenhouses, wearable and indoors, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview over the state-of-the-art performance for these systems and applications. Two important resources for record research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley-Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield (STEY) is included as an analysis parameter among state-of-the-art emerging PVs.
https://papers.cociw... arrow_drop_down https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.161133682.20483533/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://papers.cociw... arrow_drop_down https://doi.org/10.22541/au.16...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.161133682.20483533/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Switzerland, AustraliaPublisher:American Chemical Society (ACS) Daniel A. Jacobs; Malte Langenhorst; Florent Sahli; Bryce S. Richards; Thomas P. White; Christophe Ballif; Kylie R. Catchpole; Ulrich W. Paetzold;The remarkable recent progress in perovskite photovoltaics affords a novel opportunity to advance the power conversion efficiency of market-dominating crystalline silicon (c-Si) solar cells. A severe limiting factor in the development of perovskite/c-Si tandems to date has been their inferior light-harvesting ability compared to single-junction c-Si solar cells, but recent innovations have made impressive headway on this front. Here, we provide a quantitative perspective on future steps to advance perovskite/c-Si tandem photovoltaics from a light-management point of view, addressing key challenges and available strategies relevant to both the 2-terminal and 4-terminal perovskite/c-Si tandem architectures. In particular, we discuss the challenge of achieving low optical reflection in 2-terminal cells, optical shortcomings in state-of-the-art devices, the impact of transparent electrode performance, and a variety of factors which influence the optimal bandgap for perovskite top-cells. Focused attention in each of these areas will be required to make the most of the tandem opportunity.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/164022Data sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.8b03721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/164022Data sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.8b03721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu