- home
- Advanced Search
- Energy Research
- DE
- Oceanography
- Energy Research
- DE
- Oceanography
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:The Oceanography Society Authors: Christian Koeberl; Pavel S Minyuk; Martin Melles; Julie Brigham-Grette;Successful deep drilling at Lake El'gygytgyn (67°30'N, 172°05'E), in the center of western Beringia, recovered 315 m of sediment, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The core was taken using the DOSECC GLAD800 (Global Lake Drilling 800 m) hydraulic/rotary system engineered for extreme weather, using over-thickened lake ice as a drilling platform. El'gygytgyn is a Yup'ik name that has been variously translated as "the white lake" or "the lake that never thaws." Today, the lake maintains an ice cover nine to 10 months per year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Australia, NetherlandsPublisher:The Oceanography Society Funded by:EC | PHOXYEC| PHOXYRabalais, Nancy N; Cai, Wei-Jun; Carstensen, Jacob; Conley, Daniel J; Fry, Brian; Hu, Xinping; Quinones-Rivera, Zoraida; Rosenberg, Rutger; Slomp, Caroline P; Turner, R Eugene; Voss, Maren; Wissel, Bjoern; Zhang, Jing;handle: 10072/64135
Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world's coastal ocean. Climate changes and extreme weather events may modify hypoxia. Organismal and fisheries effects are at the heart of the coastal hypoxia issue, but more subtle regime shifts and trophic interactions are also cause for concern. The chemical milieu associated with declining dissolved oxygen concentrations affects the biogeochemical cycling of oxygen, carbon, nitrogen, phosphorus, silica, trace metals, and sulfide as observed in water column processes, shifts in sediment biogeochemistry, and increases in carbon, nitrogen, and sulfur, as well as shifts in their stable isotopes, in recently accumulated sediments.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2014Full-Text: http://hdl.handle.net/10072/64135Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5670/ocea...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 284 citations 284 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2014Full-Text: http://hdl.handle.net/10072/64135Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5670/ocea...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:The Oceanography Society Authors: Christian Koeberl; Pavel S Minyuk; Martin Melles; Julie Brigham-Grette;Successful deep drilling at Lake El'gygytgyn (67°30'N, 172°05'E), in the center of western Beringia, recovered 315 m of sediment, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The core was taken using the DOSECC GLAD800 (Global Lake Drilling 800 m) hydraulic/rotary system engineered for extreme weather, using over-thickened lake ice as a drilling platform. El'gygytgyn is a Yup'ik name that has been variously translated as "the white lake" or "the lake that never thaws." Today, the lake maintains an ice cover nine to 10 months per year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2011.58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Australia, NetherlandsPublisher:The Oceanography Society Funded by:EC | PHOXYEC| PHOXYRabalais, Nancy N; Cai, Wei-Jun; Carstensen, Jacob; Conley, Daniel J; Fry, Brian; Hu, Xinping; Quinones-Rivera, Zoraida; Rosenberg, Rutger; Slomp, Caroline P; Turner, R Eugene; Voss, Maren; Wissel, Bjoern; Zhang, Jing;handle: 10072/64135
Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world's coastal ocean. Climate changes and extreme weather events may modify hypoxia. Organismal and fisheries effects are at the heart of the coastal hypoxia issue, but more subtle regime shifts and trophic interactions are also cause for concern. The chemical milieu associated with declining dissolved oxygen concentrations affects the biogeochemical cycling of oxygen, carbon, nitrogen, phosphorus, silica, trace metals, and sulfide as observed in water column processes, shifts in sediment biogeochemistry, and increases in carbon, nitrogen, and sulfur, as well as shifts in their stable isotopes, in recently accumulated sediments.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2014Full-Text: http://hdl.handle.net/10072/64135Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5670/ocea...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 284 citations 284 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2014Full-Text: http://hdl.handle.net/10072/64135Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5670/ocea...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu