- home
- Advanced Search
- Energy Research
- DE
- Geosciences
- Energy Research
- DE
- Geosciences
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:MDPI AG Authors: Schweighofer, Julian A. V.; Wehrl, Michael; Baumgärtel, Sebastian; Rohn, Joachim;In urban areas, the human influence on the city-ecosystem often results in a Subsurface Urban Heat Island (SUHI), which can be used geothermally. Unfortunately, a model of a SUHI does not consider the geology and hydrogeology of the subsoil. These can vary significantly over short distances, and are of considerable importance for the energy balance. In this work, we calculated the energy and its density stored in the subsoil via a SUHI. For this so-called energy-SUHI (e-SUHI), we evaluated the geology and its physical parameters for the first 20 m below ground level in the German city of Nuremberg and linked them to measured underground temperatures in a GIS application. This approach revealed stored energy of 1.634 × 1010 MJ within the soil and water for the study area with an area of 163 km2 and a volume of 3.26 × 109 m3. It corresponds to an average energy density of 5.0 MJ/m3. The highest energy density of 16.5 MJ/m3 was found in the city center area and correlated well to increases in subsurface temperature. As expected, our model reacts sensitively to thickness changes in the geological layers and the unsaturated zone.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/1/24/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/1/24/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019 GermanyPublisher:MDPI AG Funded by:DFGDFGStefan Lippl; Peter Friedl; Christoph Kittel; Sebastián Marinsek; Thorsten Seehaus; Matthias Braun;The northern Antarctic Peninsula was affected by a significant warming over the second half of the 20th century and the collapse of several ice shelves. Local climate conditions on James Ross Island on the northeastern coast can differ strongly from the main part of the Antarctic Peninsula. This paper reports the spatial and temporal variability of glacier surface velocities and the area of their outlets throughout James Ross Island, and evaluates potential relationships with atmospheric and oceanic conditions. Velocity estimates were retrieved from intensity feature tracking of scenes from satellite synthetic aperture radar sensors TerraSAR-X and TanDEM-X between 2014 and 2018, which were validated against ground observations. Calving front positions back to 1945 were used to calculate outlet area changes for the glaciers by using a common-box approach. The annual recession rates of almost all investigated glacier calving fronts decelerated for the time periods 2009–2014 and 2014–2018 in comparison to the period 1988–2009, but their velocity patterns differed. Analysis of atmospheric conditions failed to explain the different patterns in velocity and area changes. We suggest a strong influence from local bathymetric conditions. Future investigations of the oceanic conditions would be necessary for a profound understanding of the super-position of different influencing factors.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/9/374/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/9/374/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:MDPI AG Authors: Prothero, Donald;Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary response to major climate changes. This mismatch between patterns seems best explained by species sorting. As the punctuated equilibrium model demonstrated, over long time spans most fossil species are stable and do not respond to climate change. Instead, change occurs at the next hierarchical level, with species sorting adding and subtracting to the total diversity pattern revealed by coarse-scale taxon counting, apparently responding to longer-term changes in climate as revealed by proxies like the oxygen isotope record.
Geosciences arrow_drop_down GeosciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2076-3263/2/2/25/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences2020025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2076-3263/2/2/25/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences2020025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 GermanyPublisher:MDPI AG Authors: Adam Milewski; Wondwosen M. Seyoum; Racha Elkadiri; Michael Durham;Natural and human-induced impacts on water resources across the globe continue to negatively impact water resources. Characterizing the hydrologic sensitivity to climatic and anthropogenic changes is problematic given the lack of monitoring networks and global-scale model uncertainties. This study presents an integrated methodology combining satellite remote sensing (e.g., GRACE, TRMM), hydrologic modeling (e.g., SWAT), and climate projections (IPCC AR5), to evaluate the impact of climatic and man-made changes on groundwater and surface water resources. The approach was carried out on two scales: regional (Morocco) and watershed (Souss Basin, Morocco) to capture the recent climatic changes in precipitation and total water storage, examine current and projected impacts on total water resources (surface and groundwater), and investigate the link between climate change and groundwater resources. Simulated (1979–2014) potential renewable groundwater resources obtained from SWAT are ~4.3 × 108 m3/yr. GRACE data (2002–2016) indicates a decline in total water storage anomaly of ~0.019m/yr., while precipitation remains relatively constant through the same time period (2002–2016), suggesting human interactions as the major underlying cause of depleting groundwater reserves. Results highlight the need for further conservation of diminishing groundwater resources and a more complete understanding of the links and impacts of climate change on groundwater resources.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/1/13/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10010013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/1/13/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10010013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Romanov, Dmitry; Leiss, Bernd;The huge energy potential of Enhanced Geothermal Systems (EGS) makes them perspective sources of non-intermittent renewable energy for the future. This paper focuses on potential scenarios of EGS development in a locally and in regard to geothermal exploration, poorly known geological setting—the Variscan fold-and-thrust belt —for district heating and cooling of the Göttingen University campus. On average, the considered single EGS doublet might cover about 20% of the heat demand and 6% of the cooling demand of the campus. The levelized cost of heat (LCOH), net present value (NPV) and CO2 abatement cost were evaluated with the help of a spreadsheet-based model. As a result, the majority of scenarios of the reference case are currently not profitable. Based on the analysis, EGS heat output should be at least 11 MWth (with the brine flow rate being 40 l/s and wellhead temperature being 140 °C) for a potentially profitable project. These parameters can be a target for subsurface investigation, reservoir modeling and hydraulic stimulation at a later stage. However, sensitivity analysis presented some conditions that yield better results. Among the most influential parameters on the outcome are subsidies for research wells, proximity to the campus, temperature drawdown and drilling costs. If realized, the EGS project in Göttingen might save up to 18,100 t CO2 (34%) annually.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/8/349/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/8/349/pdfData sources: SygmaPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11080349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/8/349/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/8/349/pdfData sources: SygmaPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11080349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2019 Finland, United Kingdom, GermanyPublisher:MDPI AG Funded by:DFGDFGBernhard Lucke; Joel Roskin; Kim André Vanselow; Hendrik J. Bruins; Nizar Abu-Jaber; Katleen Deckers; Susanne Lindauer; Naomi Porat; Paula J. Reimer; Rupert Bäumler; Tali Erickson-Gini; Paula Kouki;handle: 10138/305090
Loess accumulated in the Negev desert during the Pleistocene and primary and secondary loess remains cover large parts of the landscape. Holocene loess deposits are however absent. This could be due low accumulation rates, lack of preservation, and higher erosion rates in comparison to the Pleistocene. This study hypothesized that archaeological ruins preserve Holocene dust. We studied soils developed on archaeological hilltop ruins in the Negev and the Petra region and compared them with local soils, paleosols, geological outcrops, and current dust. Seven statistically modeled grain size end-members were identified and demonstrate that the ruin soils in both regions consist of mixtures of local and remote sediment sources that differ from dust compositions deposited during current storms. This discrepancy is attributed to fixation processes connected with sediment-fixing agents such as vegetation, biocrusts, and/or clast pavements associated with vesicular layers. Average dust accretion rates in the ruins are estimated to be ~0.14 mm/a, suggesting that ~30% of the current dust that can be trapped with dry marble dust collectors has been stored in the ruin soils. Deposition amounts and grain sizes do not significantly correlate with wind intensity. However, precipitation may have contributed to dust accretion. A snowstorm in the Petra region delivered a significantly higher amount of sediment than rain or dry deposition. Snowfall dust had a unique particle size distribution relatively similar to the ruin soils. Wet deposition and snow might catalyze dust deposition and enhance fixation by fostering vegetation and crust formation. More frequent snowfall during the Pleistocene may have been an important mechanism of primary loess deposition in the southern Levant.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/4/190/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9040190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/4/190/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9040190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Charlotta Bylund Melin; Vahid M. Nik; Vahid M. Nik; Kristina Holl; Ralf Kilian; Carl-Eric Hagentoft;Climate change is a growing threat to cultural heritage buildings and objects. Objects housed in historic buildings are at risk because the indoor environments in these buildings are difficult to control and often influenced by the outdoor climate. Hygroscopic materials, such as wood, will gain and release moisture during changes in relative humidity and temperature. These changes cause swelling and shrinkage, which may result in permanent damage. To increase the knowledge of climate-induced damage to heritage objects, it is essential to monitor moisture transport in wood. Simulation models need to be developed and improved to predict the influence of climate change. In a previous work, relative humidity and temperature was monitored at different depths inside wooden samples subjected to fluctuating climate over time. In this article, two methods, the hygrothermal building simulation software WUFI® Pro and the Simplified model, were compared in relation to the measured data. The conclusion was that both methods can simulate moisture diffusion and transport in wooden object with a sufficient accuracy. Using the two methods for predicted climate change data show that the mean RH inside wood is rather constant, but the RH minimum and maximum vary with the predicted scenario and the type of building used for the simulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/10/378/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8100378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/10/378/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8100378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:MDPI AG Authors: Schweighofer, Julian A. V.; Wehrl, Michael; Baumgärtel, Sebastian; Rohn, Joachim;In urban areas, the human influence on the city-ecosystem often results in a Subsurface Urban Heat Island (SUHI), which can be used geothermally. Unfortunately, a model of a SUHI does not consider the geology and hydrogeology of the subsoil. These can vary significantly over short distances, and are of considerable importance for the energy balance. In this work, we calculated the energy and its density stored in the subsoil via a SUHI. For this so-called energy-SUHI (e-SUHI), we evaluated the geology and its physical parameters for the first 20 m below ground level in the German city of Nuremberg and linked them to measured underground temperatures in a GIS application. This approach revealed stored energy of 1.634 × 1010 MJ within the soil and water for the study area with an area of 163 km2 and a volume of 3.26 × 109 m3. It corresponds to an average energy density of 5.0 MJ/m3. The highest energy density of 16.5 MJ/m3 was found in the city center area and correlated well to increases in subsurface temperature. As expected, our model reacts sensitively to thickness changes in the geological layers and the unsaturated zone.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/1/24/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/1/24/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019 GermanyPublisher:MDPI AG Funded by:DFGDFGStefan Lippl; Peter Friedl; Christoph Kittel; Sebastián Marinsek; Thorsten Seehaus; Matthias Braun;The northern Antarctic Peninsula was affected by a significant warming over the second half of the 20th century and the collapse of several ice shelves. Local climate conditions on James Ross Island on the northeastern coast can differ strongly from the main part of the Antarctic Peninsula. This paper reports the spatial and temporal variability of glacier surface velocities and the area of their outlets throughout James Ross Island, and evaluates potential relationships with atmospheric and oceanic conditions. Velocity estimates were retrieved from intensity feature tracking of scenes from satellite synthetic aperture radar sensors TerraSAR-X and TanDEM-X between 2014 and 2018, which were validated against ground observations. Calving front positions back to 1945 were used to calculate outlet area changes for the glaciers by using a common-box approach. The annual recession rates of almost all investigated glacier calving fronts decelerated for the time periods 2009–2014 and 2014–2018 in comparison to the period 1988–2009, but their velocity patterns differed. Analysis of atmospheric conditions failed to explain the different patterns in velocity and area changes. We suggest a strong influence from local bathymetric conditions. Future investigations of the oceanic conditions would be necessary for a profound understanding of the super-position of different influencing factors.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/9/374/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/9/374/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:MDPI AG Authors: Prothero, Donald;Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary response to major climate changes. This mismatch between patterns seems best explained by species sorting. As the punctuated equilibrium model demonstrated, over long time spans most fossil species are stable and do not respond to climate change. Instead, change occurs at the next hierarchical level, with species sorting adding and subtracting to the total diversity pattern revealed by coarse-scale taxon counting, apparently responding to longer-term changes in climate as revealed by proxies like the oxygen isotope record.
Geosciences arrow_drop_down GeosciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2076-3263/2/2/25/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences2020025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/2076-3263/2/2/25/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences2020025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 GermanyPublisher:MDPI AG Authors: Adam Milewski; Wondwosen M. Seyoum; Racha Elkadiri; Michael Durham;Natural and human-induced impacts on water resources across the globe continue to negatively impact water resources. Characterizing the hydrologic sensitivity to climatic and anthropogenic changes is problematic given the lack of monitoring networks and global-scale model uncertainties. This study presents an integrated methodology combining satellite remote sensing (e.g., GRACE, TRMM), hydrologic modeling (e.g., SWAT), and climate projections (IPCC AR5), to evaluate the impact of climatic and man-made changes on groundwater and surface water resources. The approach was carried out on two scales: regional (Morocco) and watershed (Souss Basin, Morocco) to capture the recent climatic changes in precipitation and total water storage, examine current and projected impacts on total water resources (surface and groundwater), and investigate the link between climate change and groundwater resources. Simulated (1979–2014) potential renewable groundwater resources obtained from SWAT are ~4.3 × 108 m3/yr. GRACE data (2002–2016) indicates a decline in total water storage anomaly of ~0.019m/yr., while precipitation remains relatively constant through the same time period (2002–2016), suggesting human interactions as the major underlying cause of depleting groundwater reserves. Results highlight the need for further conservation of diminishing groundwater resources and a more complete understanding of the links and impacts of climate change on groundwater resources.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/1/13/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10010013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/1/13/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10010013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Romanov, Dmitry; Leiss, Bernd;The huge energy potential of Enhanced Geothermal Systems (EGS) makes them perspective sources of non-intermittent renewable energy for the future. This paper focuses on potential scenarios of EGS development in a locally and in regard to geothermal exploration, poorly known geological setting—the Variscan fold-and-thrust belt —for district heating and cooling of the Göttingen University campus. On average, the considered single EGS doublet might cover about 20% of the heat demand and 6% of the cooling demand of the campus. The levelized cost of heat (LCOH), net present value (NPV) and CO2 abatement cost were evaluated with the help of a spreadsheet-based model. As a result, the majority of scenarios of the reference case are currently not profitable. Based on the analysis, EGS heat output should be at least 11 MWth (with the brine flow rate being 40 l/s and wellhead temperature being 140 °C) for a potentially profitable project. These parameters can be a target for subsurface investigation, reservoir modeling and hydraulic stimulation at a later stage. However, sensitivity analysis presented some conditions that yield better results. Among the most influential parameters on the outcome are subsidies for research wells, proximity to the campus, temperature drawdown and drilling costs. If realized, the EGS project in Göttingen might save up to 18,100 t CO2 (34%) annually.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/8/349/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/8/349/pdfData sources: SygmaPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11080349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/8/349/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/8/349/pdfData sources: SygmaPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11080349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2019 Finland, United Kingdom, GermanyPublisher:MDPI AG Funded by:DFGDFGBernhard Lucke; Joel Roskin; Kim André Vanselow; Hendrik J. Bruins; Nizar Abu-Jaber; Katleen Deckers; Susanne Lindauer; Naomi Porat; Paula J. Reimer; Rupert Bäumler; Tali Erickson-Gini; Paula Kouki;handle: 10138/305090
Loess accumulated in the Negev desert during the Pleistocene and primary and secondary loess remains cover large parts of the landscape. Holocene loess deposits are however absent. This could be due low accumulation rates, lack of preservation, and higher erosion rates in comparison to the Pleistocene. This study hypothesized that archaeological ruins preserve Holocene dust. We studied soils developed on archaeological hilltop ruins in the Negev and the Petra region and compared them with local soils, paleosols, geological outcrops, and current dust. Seven statistically modeled grain size end-members were identified and demonstrate that the ruin soils in both regions consist of mixtures of local and remote sediment sources that differ from dust compositions deposited during current storms. This discrepancy is attributed to fixation processes connected with sediment-fixing agents such as vegetation, biocrusts, and/or clast pavements associated with vesicular layers. Average dust accretion rates in the ruins are estimated to be ~0.14 mm/a, suggesting that ~30% of the current dust that can be trapped with dry marble dust collectors has been stored in the ruin soils. Deposition amounts and grain sizes do not significantly correlate with wind intensity. However, precipitation may have contributed to dust accretion. A snowstorm in the Petra region delivered a significantly higher amount of sediment than rain or dry deposition. Snowfall dust had a unique particle size distribution relatively similar to the ruin soils. Wet deposition and snow might catalyze dust deposition and enhance fixation by fostering vegetation and crust formation. More frequent snowfall during the Pleistocene may have been an important mechanism of primary loess deposition in the southern Levant.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/4/190/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9040190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/4/190/pdfData sources: Multidisciplinary Digital Publishing InstituteHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9040190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Charlotta Bylund Melin; Vahid M. Nik; Vahid M. Nik; Kristina Holl; Ralf Kilian; Carl-Eric Hagentoft;Climate change is a growing threat to cultural heritage buildings and objects. Objects housed in historic buildings are at risk because the indoor environments in these buildings are difficult to control and often influenced by the outdoor climate. Hygroscopic materials, such as wood, will gain and release moisture during changes in relative humidity and temperature. These changes cause swelling and shrinkage, which may result in permanent damage. To increase the knowledge of climate-induced damage to heritage objects, it is essential to monitor moisture transport in wood. Simulation models need to be developed and improved to predict the influence of climate change. In a previous work, relative humidity and temperature was monitored at different depths inside wooden samples subjected to fluctuating climate over time. In this article, two methods, the hygrothermal building simulation software WUFI® Pro and the Simplified model, were compared in relation to the measured data. The conclusion was that both methods can simulate moisture diffusion and transport in wooden object with a sufficient accuracy. Using the two methods for predicted climate change data show that the mean RH inside wood is rather constant, but the RH minimum and maximum vary with the predicted scenario and the type of building used for the simulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/10/378/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8100378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/10/378/pdfData sources: Multidisciplinary Digital Publishing InstituteQueensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8100378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu