- home
- Advanced Search
- Energy Research
- 7. Clean energy
- DE
- Sustainability
- Energy Research
- 7. Clean energy
- DE
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Lena Tholen; Anna Leipprand; Dagmar Kiyar; Sarah Maier; Malte Küper;Thomas Adisorn;
Andreas Fischer;Thomas Adisorn
Thomas Adisorn in OpenAIREdoi: 10.3390/su132212626
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors:Jalil Shaeri;
Jalil Shaeri
Jalil Shaeri in OpenAIREMahmood Yaghoubi;
Mahmood Yaghoubi
Mahmood Yaghoubi in OpenAIREAmin Habibi;
Amin Habibi
Amin Habibi in OpenAIREAta Chokhachian;
Ata Chokhachian
Ata Chokhachian in OpenAIREdoi: 10.3390/su11020311
Extensive cost in the building industry comes from cooling and heating to create thermal comfort. Hence, it is necessary to utilize passive solutions, in addition to suitable design, in order to reduce energy consumption. This research attempts to investigate the impact of archetype patterns in office buildings on annual energy consumption for cooling, heating and daylight loads. For this purpose, the DesignBuilder software was used to compare the forms. In this study, four conventional construction forms were considered, including the single and dense form, central courtyard buildings, U form and linear form, and each was considered with two, four and six-stories. Forms were simulated in the three cities of Bushehr, Shiraz and Tabriz, with hot-humid, hot-dry and cold climates, respectively. The results revealed that the office building with a linear form in Bushehr had the lowest energy consumption in the two and four-story forms, and also in the six-story form, the central courtyard form had the lowest energy consumption. Additionally, the central courtyard forms in Tabriz and Shiraz had the lowest energy consumption in all cases. Finally, the linear form possessed the most natural daylight through all of the studied cases for the three cities in terms of natural light gain.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/2/311/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11020311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/2/311/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11020311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Authors:Hardinghaus, Michael;
Seidel, Christian;Hardinghaus, Michael
Hardinghaus, Michael in OpenAIREAnderson, John Erik;
Anderson, John Erik
Anderson, John Erik in OpenAIREdoi: 10.3390/su11215925
Electric vehicles require sufficient public charging infrastructure. This in turn necessitates detailed information on charging demand. In this paper we present a four-step approach to estimating public charging demand of electric vehicles. Previous methods are limited in their ability to provide differentiated results and adapt to future developments. Therefore, we account for user groups (private, carsharing, commercial), technical developments (vehicles, infrastructure), infrastructure availability, and carsharing development (operational area, business models, autonomous vehicles). Our approach also considers the interactions between these factors and allows for scenario analysis yielding the quantity and spatial distribution of public charging demand. We demonstrate our approach for Berlin, Germany. We find that the majority of public charging demand results from carsharing. This demand is concentrated in the city center, even when carsharing is available citywide. Public charging demand for commercial users is relatively low and located outside the city center. For private users, public charging demand shifts to the city center with an increasing market penetration of electric vehicles and technological advancements (increased range, charging speed). Public demand from private users increases dramatically when private infrastructure is absent. Finally, public charging demand shifts to the city center when private users do not have private infrastructure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 Austria, Australia, Australia, GermanyPublisher:MDPI AG Authors:Francis Oloo;
Francis Oloo
Francis Oloo in OpenAIREKamran Safi;
Kamran Safi
Kamran Safi in OpenAIREJagannath Aryal;
Jagannath Aryal
Jagannath Aryal in OpenAIREdoi: 10.3390/su10051470
White storks (Ciconia ciconia) are birds that make annual long-distance migration flights from their breeding grounds in the Northern Hemisphere to the south of Africa. These trips take place in the winter season, when the temperatures in the North fall and food supply drops. White storks, because of their large size, depend on the wind, thermals, and orographic characteristics of the environment in order to minimize their energy expenditure during flight. In particular, the birds adopt a soaring behavior in landscapes where the thermal uplift and orographic updrafts are conducive. By attaining suitable soaring heights, the birds then use the wind characteristics to glide for hundreds of kilometers. It is therefore expected that white storks would prefer landscapes that are characterized by suitable wind and thermal characteristics, which promote the soaring and gliding behaviors. However, these same landscapes are also potential sites for large-scale wind energy generation. In this study, we used the observed data of the white stork movement trajectories to specify a data-driven agent-based model, which simulates flight behavior of the white storks in a dynamic environment. The data on the wind characteristics and thermal uplift are dynamically changed on a daily basis so as to mimic the scenarios that the observed birds experienced during flight. The flight corridors that emerge from the simulated flights are then combined with the predicted surface on the wind energy potential, in order to highlight the potential risk of collision between the migratory white storks and hypothetical wind farms in the locations that are suitable for wind energy developments. This work provides methods that can be adopted to assess the overlap between wind energy potential and migratory corridors of the migration of birds. This can contribute to achieving sustainable trade-offs between wind energy development and conservation of wildlife and, hence, handling the issues of human–wildlife conflicts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1470/pdfData sources: Multidisciplinary Digital Publishing InstituteePLUS - Open Access Publikationsserver der Universität SalzburgArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-SystemUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/5/1470/pdfData sources: Multidisciplinary Digital Publishing InstituteePLUS - Open Access Publikationsserver der Universität SalzburgArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2018Data sources: Konstanzer Online-Publikations-SystemUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors:Sinéad O’Keeffe;
Sinéad O’Keeffe
Sinéad O’Keeffe in OpenAIREDaniela Thrän;
Daniela Thrän
Daniela Thrän in OpenAIREdoi: 10.3390/su12010237
Anaerobic digestion producing biogas is an important decentralized renewable energy technology used to mitigate climate change. It is dependent on local and regional feedstocks, which determine its sustainability. This has led to discussions on how to alter feedstock for biogas plants without compromising their GHG (Greenhouse gas) saving, one particular issue being the use of Maize silage (MS) as the dominant feedstock. To support this discussion, this paper presents an integrated life cycle assessment of energy crop cultivation for 425 biogas catchments in the region of Central Germany (CG). The simulations for the CG region showed that MS as an effective crop to mitigate GHG emissions per kilowatt hour (GHGculti) was context dependent. In some cases, GHGculti reductions were supported due to higher yields, and in other cases, this led to increased GHGculti. We show that the often-proposed strategy of substituting one crop for another needs to be adapted for strategies which take into account the crop mixtures fed into biogas plants and how they perform altogether, under the specific regional and locational conditions. Only in this way can the trade-offs for lower GHGculti be identified and managed.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/237/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/237/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG doi: 10.3390/su13073973
How can citizen science projects advance the achievement of transformative air quality-related Sustainable Development Goals (SDGs) in Germany and Niger? We investigate the promise of using citizen-generated data (CGD) as an input for official SDG monitoring and implementation in a multidisciplinary project, based on activities undertaken in Niger and Germany ranging from surveys, action research, policy and legislative analysis and environmental monitoring in Niamey and Leipzig, respectively. We critically describe and evaluate the great potential, but very limited actual use of CGD sources for these global goals in both contexts from technical and policy perspectives. Agenda 2030 provides an opportunity to tackle indoor and outdoor air quality in a more integrated and transformative perspective. However, we find this agenda to be remarkably absent in air quality policy and monitoring plans. Likewise, we find no meaningful links of existing citizen science initiatives to official air quality policy. We propose how SDGs-aligned citizen science initiatives could make major contributions to environmental and health monitoring and public debate, especially in the wake of the COVID-19 pandemic. This however requires researchers to more strategically link these initiatives to policymakers and policy frameworks, such as SDG indicators and the governance structures in which they are embedded.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3973/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/7/3973/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 09 Jan 2023 ItalyPublisher:MDPI AG Authors:Robert Miehe;
Robert Miehe
Robert Miehe in OpenAIREMatthias Finkbeiner;
Alexander Sauer; Thomas Bauernhansl;Matthias Finkbeiner
Matthias Finkbeiner in OpenAIRELife Cycle Assessment (LCA) is increasingly being applied in corporate accounting. Recently, especially carbon footprinting (CF) has been adopted as ‘LCA light’ in accordance with the Greenhouse Gas Protocol. According to the strategy ‘balance, reduce, substitute, compensate’, the approach is intended to provide the basis for optimization towards climate neutrality. However, two major problems arise: (1) due to the predominant focus on climate neutrality, other decisive life-cycle impact categories are often ignored, resulting in a misrecognition of potential trade-offs, and (2) LCA is not perceived as an equal method alongside cost and value-added accounting in everyday business, as it relies on a fundamentally different system understanding. In this paper, we present basic considerations for merging the business and life-cycle perspectives and introduce a novel accounting system that combines elements of traditional operational value-added accounting, process and material flow analysis as well as LCA. The method is based on an extended system thinking, a set of principles, a calculation system, and external cost factors for the impact categories climate change, stratospheric ozone depletion, air pollution, eutrophication and acidification. As a scientifically robust assessment method, the presented approach is intended to be applied in everyday operations in manufacturing companies, providing a foundation for a fundamental change in industrial thought patterns on the way to the total avoidance of negative environmental impacts (i.e., environmental neutrality). Therefore, this is validated in two application examples in the German special tools industry, proving its practicability and reproducibility as well as the suitability of specifically derived indicators for the selective optimization of production systems.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142013603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142013603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors:Fabian Schoden;
Alina Siebert; Alparslan Keskin; Konstantin Herzig; +2 AuthorsFabian Schoden
Fabian Schoden in OpenAIREFabian Schoden;
Alina Siebert; Alparslan Keskin; Konstantin Herzig; Majkel Straus;Fabian Schoden
Fabian Schoden in OpenAIREEva Schwenzfeier-Hellkamp;
Eva Schwenzfeier-Hellkamp
Eva Schwenzfeier-Hellkamp in OpenAIREdoi: 10.3390/su12010090
Putting renewable energy to good use is necessary to deal with one of the greatest challenges of our time, namely, climate change. One problem, however, is that the technology we are using today turns into toxic waste at the end of its useful life, which in particular concerns the blades of wind turbines. We investigated how the ideas of a circular economy can be applied to address this issue. To this end, we built a small wind turbine almost entirely from used materials. The social purpose of this is to raise public awareness about renewable energy technology that is part of a circular economy. Therefore, we chose a reliable and easy-to-build concept for a small wind turbine, which can be reproduced in a “Do It Yourself” (DIY) approach. The core challenges we had to face consisted of how to acquire appropriate used materials and how to improve the efficiency of the system to obtain adequate electrical power. With a financial investment of less than €100, we built a Savonius wind turbine for use in, for example, a private garden to charge a power bank or other USB-chargeable devices.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/90/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/90/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Publisher:MDPI AG Authors:Jafar Tavoosi;
Amir Abolfazl Suratgar;Jafar Tavoosi
Jafar Tavoosi in OpenAIREMohammad Bagher Menhaj;
Mohammad Bagher Menhaj
Mohammad Bagher Menhaj in OpenAIREAmir Mosavi;
+2 AuthorsAmir Mosavi
Amir Mosavi in OpenAIREJafar Tavoosi;
Amir Abolfazl Suratgar;Jafar Tavoosi
Jafar Tavoosi in OpenAIREMohammad Bagher Menhaj;
Mohammad Bagher Menhaj
Mohammad Bagher Menhaj in OpenAIREAmir Mosavi;
Amir Mosavi
Amir Mosavi in OpenAIREArdashir Mohammadzadeh;
Ehsan Ranjbar;Ardashir Mohammadzadeh
Ardashir Mohammadzadeh in OpenAIREdoi: 10.3390/su13063301
A novel Nonlinear Consequent Part Recurrent Type-2 Fuzzy System (NCPRT2FS) is presented for the modeling of renewable energy systems. Not only does this paper present a new architecture of the type-2 fuzzy system (T2FS) for identification and behavior prognostication of an experimental solar cell set and a wind turbine, but also, it introduces an exquisite technique to acquire an optimal number of membership functions (MFs) and their corresponding rules. Using nonlinear functions in the “Then” part of fuzzy rules, introducing a new mechanism in structure learning, using an adaptive learning rate and performing convergence analysis of the learning algorithm are the innovations of this paper. Another novel innovation is using optimization techniques (including pruning fuzzy rules, initial adjustment of MFs). Next, a solar photovoltaic cell and a wind turbine are deemed as case studies. The experimental data are exploited and the consequent yields emerge as convincing. The root-mean-square-error (RMSE) is less than 0.006 and the number of fuzzy rules is equal to or less than four rules, which indicates the very good performance of the presented fuzzy neural network. Finally, the obtained model is used for the first time for a geographical area to examine the feasibility of renewable energies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3301/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3301/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:MDPI AG Authors:Gottinger, Alexandra;
Ladu, Luana; Quitzow, Rainer;Gottinger, Alexandra
Gottinger, Alexandra in OpenAIREdoi: 10.3390/su12218990
The European Commission’s strategic long-term vision for 2050, “A Clean Planet for All”, identifies the bioeconomy and the circular economy as key strategic areas for achieving a climate-neutral economy. Focus is given to the sustainability of biomass and the circularity of materials. However, in order to facilitate the transition toward a sustainable bio-based circular economy and to unlock its potential, strong accompanying measures are required. These should be designed based on a systematic understanding of transition drivers and barriers. This paper, after providing a systematic review of transition research on the circular bioeconomy, focuses on the identification and classification of transition barriers, clustering them into relevant categories. Moreover, it provides a comparison of the barriers identified by various frameworks.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/21/8990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12218990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/21/8990/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12218990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu