- home
- Advanced Search
- Energy Research
- Closed Access
- 11. Sustainability
- 12. Responsible consumption
- DK
- EU
- Energy Research
- Closed Access
- 11. Sustainability
- 12. Responsible consumption
- DK
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Elsevier BV Authors:Poul Alberg Østergaard;
Poul Alberg Østergaard
Poul Alberg Østergaard in OpenAIREAnders N. Andersen;
Anders N. Andersen
Anders N. Andersen in OpenAIREAbstract District heating (DH) enables the utilisation and distribution of heating from sources unfeasible for stand-alone applications and combined with cogeneration of heat and power (CHP), has been the cornerstone of Denmark’s realisation of a steady national primary energy supply over the last four decades. However, progressively more energy-efficient houses and a steadily improving heat pump (HP) performance for individual dwellings is straining the competitive advantage of the CHP–DH combination as DH grid losses are growing in relative terms due to decreasing heating demands of buildings and relatively high DH supply temperatures. A main driver for the DH water temperature is the requirements for domestic hot water (DHW) production. This article investigates two alternatives for DHW supply: (a) DH based on central HPs combined with a heat exchanger, and (b) a combination of DH based on central HPs and a small booster HP using DH water as low-temperature source for DHW production. The analyses are conducted using the energyPRO simulation model and are conducted with hourly varying factors; heating demands, DH grid losses, HP coefficient of performance (COP) and spot market prices in order to be able to analyse the relative performance of the two options and their performance over the year. Results are also compared to individual boilers and individual HPs. The results indicate that applying booster HPs enables the DH system to operate at substantially lower temperature levels, improving the COP of central DH HPs while simultaneously lowering DH grid losses significantly. Thus, DH performance is increased significantly. Additionally, performance for the DH HP with booster combination is considerably better than individual boiler or HP solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:EC | CCECONEC| CCECONAbstract This paper provides a forecast of electricity consumption in Cyprus up to the year 2030, based on econometric analysis of energy use as a function of macroeconomic variables, prices and weather conditions. If past trends continue electricity use is expected to triple in the coming 20–25 years, with the residential and commercial sectors increasing their already high shares in total consumption. Besides this reference scenario it was attempted to assess the impact of climate change on electricity use. According to official projections, the average temperature in the Eastern Mediterranean is expected to rise by about 1 °C by the year 2030. Using our econometrically estimated model, we calculated that electricity consumption in Cyprus may be about 2.9% higher in 2030 than in the reference scenario. This might lead to a welfare loss of 15 million Euros in 2020 and 45 million Euros in 2030; for the entire period 2008–2030 the present value of costs may exceed 200 million Euros (all expressed in constant Euros of 2007). Moreover, we assessed the additional peak electricity load requirements in the future because of climate change: extra load may amount to 65–75 Megawatts (MW) in the year 2020 and 85–95 MW in 2030.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Authors:Kemausuor, Francis;
Kemausuor, Francis
Kemausuor, Francis in OpenAIREKamp, Andreas;
Kamp, Andreas
Kamp, Andreas in OpenAIREThomsen, Sune Tjalfe;
Thomsen, Sune Tjalfe
Thomsen, Sune Tjalfe in OpenAIREBensah, Edem Cudjoe;
+1 AuthorsBensah, Edem Cudjoe
Bensah, Edem Cudjoe in OpenAIREKemausuor, Francis;
Kemausuor, Francis
Kemausuor, Francis in OpenAIREKamp, Andreas;
Kamp, Andreas
Kamp, Andreas in OpenAIREThomsen, Sune Tjalfe;
Thomsen, Sune Tjalfe
Thomsen, Sune Tjalfe in OpenAIREBensah, Edem Cudjoe;
Stergård, Hanne;Bensah, Edem Cudjoe
Bensah, Edem Cudjoe in OpenAIREAbstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:EC | STORM, EC | PARIS REINFORCEEC| STORM ,EC| PARIS REINFORCETechnical and economic developments in battery and fast-charging technologies could soon make fuel cell electric vehicles, which run on hydrogen, superfluous in road transport
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41928-021-00706-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 23visibility views 23 download downloads 318 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41928-021-00706-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hongjun Mao; Meiting Ju;Yuening Li;
Zhu Fudong; +8 AuthorsYuening Li
Yuening Li in OpenAIREHongjun Mao; Meiting Ju;Yuening Li;
Zhu Fudong; Yan Liu; Luna Sun; Jingbo Zhao; Boyang Liu; Yingchao Lin; Li Weizun; Jing Zhang;Yuening Li
Yuening Li in OpenAIRETing Wang;
Ting Wang
Ting Wang in OpenAIREpmid: 29224974
Four different municipal solid wastes (dog manure, horse manure, apple pomace waste and tea waste) and an industrial by-product (NovoGro) were used to produce solid fuel pellets. The mixtures followed a raw material to NovoGro ratio of 50:1. The pellets diameters varied between 4 and 5 mm, and the average length was 20 mm. The dog manure, horse manure, apple pomace waste and tea waste pellets were denoted as DN, HN, AN and TN, respectively. The combustion characteristics of the pelletized fuels were investigated, such as total moisture, ash content, calorific value and ash fusion point, etc. The physicochemical properties were analyzed by using a number of analytical techniques including X-ray fluorescence spectrometry (XRF), X-ray diffraction spectrometry (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results of the mechanical, thermal and morphological properties show that the raw materials were effectively combined with the NovoGro binder; furthermore, the DN, HN and TN pellets exhibited excellent mechanical and thermal properties, including high calorific values (>16.30 MJ/kg), high resistance to mechanical shock (>99%), high volatile matter contents, optimal softening temperatures and optimal ash contents. However, the high K, Ca, and Si contents of the AN can form low-melting-point eutectics, which can cause slagging. Moreover, the AN materials had large particle sizes, and high cellulose and hemicellulose contents led to high total moistures, low softening temperatures and low calorific values. The AN was not suitable for use as a fuel. The results suggested that NG is an effective binder for pelletization of biomass and showed the feasibility of using municipal solid wastes for energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2017.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2017.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Frede Blaabjerg;
Frede Blaabjerg
Frede Blaabjerg in OpenAIREPin Jern Ker;
Pin Jern Ker
Pin Jern Ker in OpenAIREM. S. Hossain Lipu;
M. S. Hossain Lipu
M. S. Hossain Lipu in OpenAIREM. A. Hannan;
+2 AuthorsM. A. Hannan
M. A. Hannan in OpenAIREFrede Blaabjerg;
Frede Blaabjerg
Frede Blaabjerg in OpenAIREPin Jern Ker;
Pin Jern Ker
Pin Jern Ker in OpenAIREM. S. Hossain Lipu;
M. S. Hossain Lipu
M. S. Hossain Lipu in OpenAIREM. A. Hannan;
Rawshan Ara Begum; Vasilios G. Agelidis;M. A. Hannan
M. A. Hannan in OpenAIREAbstract Global energy consumption is increasing at a dramatic rate and will likely continue to do so. The major source of energy is still fossil fuel, which has resulted in the well-documented problem of global warming due to the emission of greenhouse gases from the burning of such fuel. Climate change and global warming are among the crucial and complex issues encountered by the world today, and they require an immediate solution. Technological innovation is the key to ensuring energy security without causing emissions and providing efficient cost-effective energy solutions. Power electronic technologies offer high reliability and renewable energy conversion efficiency, thus contributing to energy conservation, improving energy efficiency, and helping in the mitigation of harmful global emissions. This review focuses on various aspects of power electronic technologies and their importance in tackling carbon emission and global warming problems. The key topologies of power electronic converters are explained based on types, control difficulties, benefits, and drawbacks. Power electronic controllers utilized for energy conversion are comprehensively reviewed with regard to their structure, algorithm complexity, strengths and weaknesses, and mathematical modeling. The review focuses on power converters and controllers used in different applications and highlight their contributions to energy conservation, increasing the share of renewable energy sources, and mitigating emissions. Moreover, existing research gaps, issues, and challenges are identified. The insights provided by are expected to lead to the enhanced development of advanced power electronic converters and controllers for sustainable energy conversion. Such development can reduce carbon emissions and mitigate global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Abstract In later years the potential contribution of forest bioenergy to mitigate climate change has been increasingly questioned due to temporal displacement between CO 2 emissions when forest biomass is used for energy and subsequent sequestration of carbon in new biomass. Also disturbance of natural decay of dead biomass when used for energy affect the carbon dynamics of forest ecosystems. These perturbations of forest ecosystems are summarized under the concept of carbon debt and its payback time. Narrative reviews demonstrate that the payback time of apparently comparable forest bioenergy supply scenarios vary by up to 200 years allowing amble room for confusion and dispute about the climate benefits of forest bioenergy. This meta-analysis confirm that the outcome of carbon debt studies lie in the assumptions and find that methodological rather than ecosystem and management related assumptions determine the findings. The study implies that at the current development of carbon debt methodologies and their lack of consensus the concept in it-self is inadequate for informing and guiding policy development. At the management level the carbon debt concept may provide valuable information directing management principles in a more climate benign directions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 DenmarkPublisher:Informa UK Limited Authors:Jensen, Jesper Ole;
Jensen, Jesper Ole
Jensen, Jesper Ole in OpenAIREGram-Hanssen, Kirsten;
Gram-Hanssen, Kirsten
Gram-Hanssen, Kirsten in OpenAIREHow has the contemporary development of sustainable buildings been influenced by the concept of ecological modernization? Ecological modernization is a policy concept describing how environmental considerations are increasingly being integrated into modern society's institutions through, for example, new types of cooperation and new applications of economic and market dynamics. Evidence is based on recent examples from politics and practice in the construction sector in Denmark, where sustainable buildings have gone through great changes – from being primarily isolated cases driven by enthusiasts and grassroots to being a more widespread, generally obtainable, and integrated product. This is considered within the context of ecological modernization, along with the implications of potential benefits and drawbacks. Based on the concepts of governance, standardization, and visibility, it is found that ecological modernization has penetrated in Danish sustainable buildings and has contributed to a positive de...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09613210701642337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09613210701642337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors:Hanne Østergård;
Hanne Østergård
Hanne Østergård in OpenAIREAndreas Kamp;
Andreas Kamp
Andreas Kamp in OpenAIREAbstract Assessments of environmental performance are challenged by multifunctionality of production systems where impacts cannot be assigned to any one specific output. In the assessment method emergy accounting, all available energy used up for a process is summed up after being converted to solar equivalent Joules. In emergy accounting each output carries the resource use burden of all co-produced outputs. When comparing emergy indicators on a product-to-product basis (reference approach), products from single-output processes tend to be favoured. This constitutes a method bias. Building on emergy algebra rules, we describe approaches to calculate solar transformities when co-production is involved and give guidelines on how to compare products and systems. The approaches are exemplified in a comparison between willow biomass, fertilised with manure, and natural gas used as feedstock for combined heat and power (CHP) production. A Danish willow-based CHP model system was assessed whereas data for the fossil-based system was from literature. When compared on a product-to-product basis using the reference approach, bio-based CHP production is inferior to fossil-based CHP with respect to resource use (transformities of 2.31 E+05 seJ/J and 0.88 E+05 seJ/J, respectively). If the manure is considered as a waste and modelled as heat loss, the single-product transformity for biobased production is only 0.37 E+05 seJ/J. When compared on a system-to-system basis, bio-based production is competitive with fossil-based production (transformities of 2.21 E+05 seJ/J and 2.29 E+05 seJ/J, respectively). The paper evaluates compatibility of suggested approaches with emergy theory and practices and presents a discussion of the distinction between waste and resource.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2012.12.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2012.12.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Ahmad Arabkoohsar;
Ali Sulaiman Alsagri;Ahmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREAmirmohammad Behzadi;
Amirmohammad Behzadi
Amirmohammad Behzadi in OpenAIREAbstract In the present work, a novel hybrid solar-based smart building energy system is introduced and studied. The system comprises innovative photovoltaic-thermal-cooling (PVTC) panels integrated with hot and cold storages with two-way interaction with electricity, heat, and cooling networks (if any). The proposed system is compared with PV-based systems integrated with battery and heat pump for a case study complex building in Aarhus, Denmark. The comparison is conducted by evaluating the performance and economic indicators and investigating the effect of significant parameters on each scenario via a parametric study. Furthermore, the optimal operating conditions and sizing of the proposed system are determined using the genetic algorithm method considering initial cost and traded energy with local energy networks as the objective functions. The comparison results show that the proposed solution is the most cost-effective scenario with the lowest initial cost of about 457,000 $ and a payback period of 6.6 years. This is mainly due to the simultaneous interaction with electricity/heat/cooling networks as well as the elimination of the battery and the heat pump, which are offered by the proposed scenario. It is shown that, in comparison to PV panels, the PVTC can produce 328.7 MWh and 125.6 MWh extra heat and cooling annually. The scatter distribution of significant parameters shows that the panel area and heat storage capacity are not sensitive parameters, and keeping the cold storage capacity at the lower bound is a techno-economically better option.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu