Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
263 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 15. Life on land
  • DK

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pedersen, Morten; Staehr, Peter; orcid Wernberg, Thomas;
    Wernberg, Thomas
    ORCID
    Harvested from ORCID Public Data File

    Wernberg, Thomas in OpenAIRE
    orcid Thomsen, Mads Solgaard;
    Thomsen, Mads Solgaard
    ORCID
    Harvested from ORCID Public Data File

    Thomsen, Mads Solgaard in OpenAIRE

    Abstract The expansion of Sargassum muticum in the Danish estuary Limfjorden between 1984 and 1997 was followed by a decrease in abundance of native perennial macroalgae such as Halidrys siliquosa. Although commonly associated with the expansion of exotic species, it is unknown whether such structural changes affect ecosystem properties such as the production and turnover of organic matter and associated nutrients. We hypothesized that S. muticum possesses ‘ephemeral’ traits relative to the species it has replaced, potentially leading to faster and more variable turnover of organic matter. The biomass dynamics of S. muticum and H. siliquosa was therefore compared in order to assess the potential effects of the expansion of Sargassum. The biomass of Sargassum was highly variable among seasons while that of Halidrys remained almost constant over the year. Sargassum grew faster than Halidrys and other perennial algae and the annual productivity was therefore high (P/B = 12 year−1) and exceeded that of Halidrys (P/B = 5 year−1) and most probably also that of other perennial algae in the system. The major grazer on macroalgae in Limfjorden, the sea urchin Psammechinus miliaris, preferred Sargassum to Halidrys, but estimated losses due to grazing were negligible for both species and most of the production may therefore enter the detritus pool. Detritus from Sargassum decomposed faster and more completely than detritus from Halidrys and other slow-growing perennial macrophytes. High productivity and fast decomposition suggest that the increasing dominance of S. muticum have increased turnover of organic matter and associated nutrients in Limfjorden and we suggest that the ecological effects of the invasion to some extent resemble those imposed by increasing dominance of ephemeral algae following eutrophication.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Botanyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Botany
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    64
    citations64
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Botanyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Botany
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Teunis Johannes Dijkman; orcid Morten Birkved;
    Morten Birkved
    ORCID
    Harvested from ORCID Public Data File

    Morten Birkved in OpenAIRE
    orcid Michael Zwicky Hauschild;
    Michael Zwicky Hauschild
    ORCID
    Harvested from ORCID Public Data File

    Michael Zwicky Hauschild in OpenAIRE

    The spatial dependency of pesticide emissions to air, surface water and groundwater is illustrated and quantified using PestLCI 2.0, an updated and expanded version of PestLCI 1.0. PestLCI is a model capable of estimating pesticide emissions to air, surface water and groundwater for use in life cycle inventory (LCI) modelling of field applications. After calculating the primary distribution of pesticides between crop and soil, specific modules calculate the pesticide’s fate, thus determining the pesticide emission pattern for the application. PestLCI 2.0 was developed to overcome the limitations of the first model version, replacement of fate calculation equations and introducing new modules for macropore flow and effects of tillage. The accompanying pesticide database was expanded, the meteorological and soil databases were extended to include a range of European climatic zones and soil profiles. Environmental emissions calculated by PestLCI 2.0 were compared to results from the risk assessment models SWASH (surface water emissions), FOCUSPEARL (groundwater via matrix leaching) and MACRO (groundwater including macropore flow, only one scenario available) to partially validate the updated model. A case study was carried out to demonstrate the spatial variation of pesticide emission patterns due to dependency on meteorological and soil conditions. Compared to PestLCI 1.0, PestLCI 2.0 calculated lower emissions to surface water and higher emissions to groundwater. Both changes were expected due to new pesticide fate calculation approaches and the inclusion of macropore flow. Differences between the SWASH and FOCUSPEARL and PestLCI 2.0 emission estimates were generally lower than 2 orders of magnitude, with PestLCI generally calculating lower emissions. This is attributed to the LCA approach to quantify average cases, contrasting with the worst-case risk assessment approach inherent to risk assessment. Compared to MACRO, the PestLCI 2.0 estimates for emissions to groundwater were higher, suggesting that PestLCI 2.0 estimates of fractions leached to groundwater may be slightly conservative as a consequence of the chosen macropore modelling approach. The case study showed that the distribution of pesticide emissions between environmental compartments strongly depends on local climate and soil characteristics. PestLCI 2.0 is partly validated in this paper. Judging from the validation data and case study, PestLCI 2.0 is a pesticide emission model in acceptable accordance with both state-of-the-art pesticide risk assessment models. The case study underlines that the common pesticide emission estimation practice in LCI may lead to misestimating the toxicity impacts of pesticide use in LCA.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The International Journal of Life Cycle Assessment
    Article . 2012 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The International Journal of Life Cycle Assessment
      Article . 2012 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Tagesson, T.;
    Tagesson, T.
    ORCID
    Harvested from ORCID Public Data File

    Tagesson, T. in OpenAIRE
    Smith, B.; Löfgren, A.; orcid Rammig, A.;
    Rammig, A.
    ORCID
    Harvested from ORCID Public Data File

    Rammig, A. in OpenAIRE
    +2 Authors

    The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with process-based vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average, well simulated but too homogeneous among vegetation types when compared with field estimates using forest inventory data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publication Database...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    AMBIO
    Article . 2009 . Peer-reviewed
    Data sources: Crossref
    AMBIO
    Article . 2010
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publication Database...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      AMBIO
      Article . 2009 . Peer-reviewed
      Data sources: Crossref
      AMBIO
      Article . 2010
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rautio, Milla; Dufresne, France; orcid Laurion, Isabelle;
    Laurion, Isabelle
    ORCID
    Harvested from ORCID Public Data File

    Laurion, Isabelle in OpenAIRE
    orcid Bonilla, Sylvia;
    Bonilla, Sylvia
    ORCID
    Harvested from ORCID Public Data File

    Bonilla, Sylvia in OpenAIRE
    +2 Authors

    This review provides a synthesis of limnological data and conclusions from studies on ponds and small lakes at our research sites in Subarctic and Arctic Canada, Alaska, northern Scandinavia, and Greenland. Many of these water bodies contain large standing stocks of benthic microbial mats that grow in relatively nutrient-rich conditions, while the overlying water column is nutrient-poor and supports only low concentrations of phytoplankton. Zooplankton biomass can, however, be substantial and is supported by grazing on the microbial mats as well as detrital inputs, algae, and other plankton. In addition to large annual temperature fluctuations, a short growing season, and freeze-up and desiccation stress in winter, these ecosystems are strongly regulated by the supply of organic matter and its optical and biogeochemical properties. Dissolved organic carbon affects bacterial diversity and production, the ratio between pelagic and benthic primary productivity via light attenuation, and the exposure and photoprotection responses of organisms to solar ultraviolet radiation. Climate warming is likely to result in reduced duration of ice-cover, warmer water temperatures, and increased nutrient supplies from the more biogeochemically active catchments, which in turn may cause greater planktonic production. Predicted changes in the amount and origin of dissolved organic matter may favour increased microbial activity in the water column and decreased light availability for the phytobenthos, with effects on biodiversity at all trophic levels, and increased channelling of terrestrial carbon to the atmosphere in the form of greenhouse gases.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Copenh...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecoscience
    Article . 2011 . Peer-reviewed
    Data sources: Crossref
    addClaim
    186
    citations186
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Copenh...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecoscience
      Article . 2011 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bentsen, Niclas Scott;
    Bentsen, Niclas Scott
    ORCID
    Harvested from ORCID Public Data File

    Bentsen, Niclas Scott in OpenAIRE
    Møller, Ian Max;

    Abstract Climate change mitigation requires a shift from fossil energy resources to renewables, and bioenergy crops are considered one of the major potential resources. At the same time future energy supplies are expected to be sustainable, but the sustainability of energy crop production is challenged by concerns over its potential competition for arable land and disruption of food and feed markets. Protein in plant biomass is a challenge for sustainability, but also an opportunity. The challenge with protein is a disproportionately large land use foot print associated with its biosynthesis. Bioenergy exploits solar energy temporarily stored in biomass compounds such as carbohydrate, lipid, lignin, protein and organic acids. Here we review energy cost estimates for photosynthesis and growth and maintenance respiration and show – by comparing energy costs with the amount of energy stored in different plant compounds – that protein conservation could improve the sustainability of energy crop production by reducing land use impacts. The opportunity with protein in plant biomass comes from the fact that favored energy crops like switch grass, reed grass and Miscanthus are excellent protein producers on par with soybean and other protein-rich crops. Due to the scale of potential future bioenergy deployment we find that energy strategies involving large amounts of herbaceous energy crops will not be sustainable unless the proteins are conserved in some way.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rosgaard, Lisa; de Porcellinis, Alice Jara; Jacobsen, Jacob Hedemand; orcid Frigaard, Niels-Ulrik;
    Frigaard, Niels-Ulrik
    ORCID
    Harvested from ORCID Public Data File

    Frigaard, Niels-Ulrik in OpenAIRE
    +1 Authors

    Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biotechno...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Biotechnology
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    137
    citations137
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biotechno...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Biotechnology
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rasmus Due Nielsen; orcid Ole Roland Therkildsen;
    Ole Roland Therkildsen
    ORCID
    Harvested from ORCID Public Data File

    Ole Roland Therkildsen in OpenAIRE
    orcid Thorsten J. S. Balsby;
    Thorsten J. S. Balsby
    ORCID
    Harvested from ORCID Public Data File

    Thorsten J. S. Balsby in OpenAIRE
    Jesper Bladt; +2 Authors

    The proliferation of ever-larger wind turbines poses risks to wildlife, especially from avian collision, yet avoidance behaviour of large-bodied, long-lived bird species in relation to wind turbines remains little studied away from collision "black spots" and offshore marine environments. Here, three-dimensional flight trajectory data are reported from a laser range-finder study of local movements of large-bodied birds (e.g. swans, geese, gulls, cormorants, raptors and cranes, whose populations are relatively more demographically sensitive to collision mortality) in relation to seven terrestrial 150-222 m high (mean 182 m) wind turbines constructed in Denmark in a N-S line. Comparisons of two-dimensional flight passages between turbines pre- (n = 287) and post-construction (n = 1210) showed significant (P 182 m) were significantly greater (P < 0.0001) post-construction than prior to construction. These are the first results from tracking large-bodied bird flight trajectories to show the magnitude of their vertical and horizontal adjustments to the presence of turbines, which have implications for assumptions of even flight densities made by collision risk models currently used to predict avian turbine collision rates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Subramanian, Aneesh;
    Subramanian, Aneesh
    ORCID
    Harvested from ORCID Public Data File

    Subramanian, Aneesh in OpenAIRE
    orcid Jochum, Markus;
    Jochum, Markus
    ORCID
    Harvested from ORCID Public Data File

    Jochum, Markus in OpenAIRE
    orcid Miller, Arthur J.;
    Miller, Arthur J.
    ORCID
    Harvested from ORCID Public Data File

    Miller, Arthur J. in OpenAIRE
    orcid Neale, Richard;
    Neale, Richard
    ORCID
    Harvested from ORCID Public Data File

    Neale, Richard in OpenAIRE
    +3 Authors

    The change in Madden–Julian oscillation (MJO) amplitude and variance in response to anthropogenic climate change is assessed in the 1° nominal resolution community climate system model, version 4 (CCSM4), which has a reasonable representation of the MJO characteristics both dynamically and statistically. The twentieth century CCSM4 run is compared with the warmest twenty-first century projection (representative concentration pathway 8.5, or RCP8.5). The last 20 years of each simulation are compared in their MJO characteristics, including spatial variance distributions of winds, precipitation and outgoing longwave radiation, histograms of event amplitude, phase and duration, and composite maps of phases. The RCP8.5 run exhibits increased variance in intraseasonal precipitation, larger-amplitude MJO events, stronger MJO rainfall in the central and eastern tropical Pacific, and a greater frequency of MJO occurrence for phases corresponding to enhanced rainfall in the Indian Ocean sector. These features are consistent with the concept of an increased magnitude for the hydrological cycle under greenhouse warming conditions. Conversely, the number of active MJO days decreases and fewer weak MJO events occur in the future climate state. These results motivate further study of these changes since tropical rainfall variability plays such an important role in the region’s socio-economic well being.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Climate Dynamics
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Climate Dynamics
      Article . 2013 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Meyer, Ane Katharina Paarup; Schleier, Caroline; Piorr, Hans Peter; orcid Holm-Nielsen, Jens Bo;
    Holm-Nielsen, Jens Bo
    ORCID
    Harvested from ORCID Public Data File

    Holm-Nielsen, Jens Bo in OpenAIRE

    AbstractThis paper presents an assessment of the surplus grass production in the Region of Southern Denmark, and the perspectives of utilizing it in local biogas production. Grass production represents a significant role in the Danish agricultural sector. However, statistical data show an excess production of averagely 12% in the period 2006–2012. Based on spatial analyses and statistical data, the geographical distribution of grass production and consumption was estimated and mapped for the Region of Southern Denmark. An excess production of grass was estimated for several of the municipalities in the Region of Southern Denmark, but the excess production was found to be quite sensitive to the management practice of the grass fields and the productivity of the grass. The yields of excess grass estimated in the sensitive and conservative scenario were found to be sufficient to serve a sole co-substrate in 2–8 biogas plants using animal manure as primary feedstock. The yields in the intensive scenario were assessed to be sufficient to serve a sole co-substrate in 8–16 biogas plants. Alternatively, at least 31% of the regionally produced maize which is exported to the biogas sector could annually be substituted by methane produced from the production of excess grass. The intensive scenario was estimated to have significantly higher grass yields than the sensitive and conservative scenario. The environmental impacts of intensified agricultural management should, however, be assessed carefully in order to ensure that the ecosystems are not increasingly being burdened. The potential of utilizing residual grass for energy production in the region or as an alternative to the maize exported to Northern Germany, was concluded to seem as a promising possibility for a sustainable development of the regional biogas sector. Furthermore, it could provide incentives for establishing new biogas plants in the region and thereby increase the share of manure being digested anaerobically, which could help extrapolate the environmental and climate related benefits documented for the use of digested animal manure as fertilizer on agricultural land.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Agricultur...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Agriculture and Food Systems
    Article . 2015 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2016
    Data sources: VBN
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Agricultur...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Agriculture and Food Systems
      Article . 2015 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2016
      Data sources: VBN
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Thiago F. Rangel;
    Thiago F. Rangel
    ORCID
    Harvested from ORCID Public Data File

    Thiago F. Rangel in OpenAIRE
    orcid Rafael Loyola;
    Rafael Loyola
    ORCID
    Harvested from ORCID Public Data File

    Rafael Loyola in OpenAIRE
    orcid David Nogués-Bravo;
    David Nogués-Bravo
    ORCID
    Harvested from ORCID Public Data File

    David Nogués-Bravo in OpenAIRE
    orcid Miguel B. Araújo;
    Miguel B. Araújo
    ORCID
    Harvested from ORCID Public Data File

    Miguel B. Araújo in OpenAIRE
    +4 Authors

    Abstract.  1. The effects of climate change on species’ ranges have been usually inferred using niche‐based models creating bioclimatic envelopes that are projected into geographical space. Here, we apply an ensemble forecasting approach for niche models in the Neotropical grasshopper Tropidacris cristata (Acridoidea: Romaleidae). A novel protocol was used to partition and map the variation in modelled ranges due to niche models, Atmosphere‐Ocean Global Circulation Models (AOGCM), and emission scenarios.2. We used 112 records of T. cristata and four climatic variables to model the species’ niche using five niche models, four AOGCMs and two emission scenarios. Combinations of these effects (50 cross‐validations for each of the 15 subsets of the environmental variables) were used to estimate and map the occurrence frequencies (EOF) across all analyses. A three‐way anova was used to partition and map the sources of variation.3. The projections for 2080 show that the range edges of the species are likely to remain approximately constant, but shifts in maximum EOF are forecasted. Suitable climatic conditions tend to disappear from central areas of Amazon, although this depends on the AOGCM and the niche model. Most of the variability around the mapped consensus projections came from using distinct niche models and AOGCMs.4. Although our analyses are restricted to a single species, they provide new conceptual and methodological insights in the application of ensemble forecasting and variance partition approaches to understand the origins of uncertainty in studies assessing species responses to climate change in the tropics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Conservation ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Insect Conservation and Diversity
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    65
    citations65
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Conservation ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Insect Conservation and Diversity
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph