- home
- Advanced Search
- Energy Research
- 11. Sustainability
- DK
- Energy Research
- 11. Sustainability
- DK
description Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Elsevier BV Authors: Poul Alberg Østergaard; Anders N. Andersen;Abstract District heating (DH) enables the utilisation and distribution of heating from sources unfeasible for stand-alone applications and combined with cogeneration of heat and power (CHP), has been the cornerstone of Denmark’s realisation of a steady national primary energy supply over the last four decades. However, progressively more energy-efficient houses and a steadily improving heat pump (HP) performance for individual dwellings is straining the competitive advantage of the CHP–DH combination as DH grid losses are growing in relative terms due to decreasing heating demands of buildings and relatively high DH supply temperatures. A main driver for the DH water temperature is the requirements for domestic hot water (DHW) production. This article investigates two alternatives for DHW supply: (a) DH based on central HPs combined with a heat exchanger, and (b) a combination of DH based on central HPs and a small booster HP using DH water as low-temperature source for DHW production. The analyses are conducted using the energyPRO simulation model and are conducted with hourly varying factors; heating demands, DH grid losses, HP coefficient of performance (COP) and spot market prices in order to be able to analyse the relative performance of the two options and their performance over the year. Results are also compared to individual boilers and individual HPs. The results indicate that applying booster HPs enables the DH system to operate at substantially lower temperature levels, improving the COP of central DH HPs while simultaneously lowering DH grid losses significantly. Thus, DH performance is increased significantly. Additionally, performance for the DH HP with booster combination is considerably better than individual boiler or HP solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Authors: Pedro Cabrera; Henrik Lund; José A. Carta;This paper presents a new method, based on the Smart Energy Systems concept. The aim is to increase the share of renewable energy penetration on islands. The method is applied to the island of Gran Canaria (Spain), considering the entire energy system of the island. Several smart renewable energy strategies are proposed following a cross-sectoral approach between the electricity, heating/cooling, desalination, transport and gas sectors. The different smart renewable energy strategies were applied in a series of steps, while looking for a transition from the current energy system to a nearly 100% renewable energy system. Based on the results, the study concludes that the suggested method is applicable for increasing renewable integration on islands and can potentially be used in helping energy planners to take decisions about priorities in development of the sector to improve such integration. The results indicate that, for the case of Gran Canaria, a 75.9% renewable energy system could be attained with technologies that can be implemented at present. Furthermore, it is shown that a nearly 100% renewable energy system in Gran Canaria is technically feasible and could be achieved if certain technologies acquire greater maturity. © 2018 Elsevier Ltd 443 421 2,048 5,537 Q1 Q1 SCIE
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:MDPI AG Funded by:EC | BACWIREEC| BACWIREBorjas, Zulema; Ortiz, Juan M.; Aldaz Riera, Antonio; Feliu, Juan M.; Esteve-Núñez, Abraham;doi: 10.3390/en81212416
Microbial electrochemical technologies (METs) constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD) removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC) followed in time by a microbial fuel cell (MFC) to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Wen-Wen Guo; Lei Jin; Wang Li; Wen-Ting Wang;Climate change and human activities are two major drivers of grasslands degradation. Understanding the vulnerability of grasslands to both drives is of great importance for grassland conservation. This research established a vulnerability assessment model with historical and future the Normalized Difference Vegetation Index (NDVI), which was predicted by an optimized spatiotemporal NDVI prediction model, and then examined the vulnerability of grasslands under climate change and human activities in Gannan Prefecture on the north-eastern Qinghai-Tibet Plateau. Our results show that Gannan grasslands would show a vulnerability pattern of higher in the west and lower in the east under climate change and human activities. More than 46 % and 17 % of the region will become highly and medium vulnerable areas in the future, mainly concentrated in Maqu, Luqu and Xiahe counties in the west, southwest and northwest of Gannan. Specifically, the vulnerability is the lowest under the future climate scenario of moderate carbon emissions (i.e. RCP 4.5). Land use types such as forest land, unutilized land and cultivated land conversion to grassland could partially offset the vulnerability mainly caused climate change, while the conversion of grassland to unutilized land, forest land and cultivated land would increase the vulnerability of grassland. Our results would help to deepen the understanding of the patterns and main drivers of Gannan grasslands vulnerability under the impacts of climate change and human activities, and provide theoretical basis for the development of corresponding grassland management policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2023.110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2023.110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Brazil, United KingdomPublisher:Elsevier BV Authors: Devika Kannan; Charbel José Chiappetta Jabbour; Charbel José Chiappetta Jabbour; Lara Bartocci Liboni Amui; +3 AuthorsDevika Kannan; Charbel José Chiappetta Jabbour; Charbel José Chiappetta Jabbour; Lara Bartocci Liboni Amui; Lara Bartocci Liboni Amui; Ana Beatriz Lopes de Sousa Jabbour; Ana Beatriz Lopes de Sousa Jabbour;handle: 11449/178424 , 1893/23947
Sustainability is a managerial trend that plays an important role in the contemporary organizational strategy. A company’s capability to make sustainability more dynamic and integrated with strategies, transforming it into a business asset, has yet to be studied. This process of adaptation is reflected through innovative practices. However, there is still a gap between these practices and the organization’s strategies and capabilities. The aim of this work was to conduct a systematic literature review of the dynamic capabilities for sustainability. Afterward, it was possible to systematize the available knowledge, assessing the current lack of research integrating both themes. The mainstream literature was classified and coded, resulting in a framework for what has been done to date, with recommendations to guide future research. Results show that more research is needed on dynamic capabilities for sustainability, especially in emerging economies in general. Future studies should also consider mixed methodologies and comparative perspectives in multiples sectors or in the services sector. There’s also space to discuss managerial innovations toward sustainability through research alliances between different institutions around the world. In short, there are few studies that connect both themes— corporate sustainability and dynamic capabilities—and for this reason there is an opportunity for future studies seeking to identify what kind of dynamic capabilities can be developed to more effectively overcome the emerging sustainability challenges.
CORE arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.07.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 11visibility views 11 download downloads 192 Powered bymore_vert CORE arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.07.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dorte Skaarup Østergaard; Kevin Michael Smith; Michele Tunzi; Svend Svendsen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Jørgen Hollesen; Malte Skov Jepsen; Hans Harmsen;Over the past decades, climate change has accelerated the deterioration of heritage sites and archaeological resources in Arctic and subarctic landscapes. At the same time, increased tourism and growing numbers of site visitors contribute to the degradation and manipulation of archaeological sites. This situation has created an urgent need for new, quick, and non-invasive tools and methodologies that can help cultural heritage managers detect, monitor, and mitigate vulnerable sites. In this context, remote sensing and the applications of UAVs could play an important role. Here, we used a drone equipped with an RGB camera and a single multispectral/thermal camera to test different possible archeological applications at two well-known archaeological sites in the UNESCO World Heritage area of Kujataa in south Greenland. The data collected were used to test the potential of using the cameras for mapping (1) ruins and structures, (2) the impact of human activity, and (3) soil moisture variability. Our results showed that a combination of RGB and digital surface models offers very useful information to identify and map ruins and structures at the study sites. Furthermore, a combination of RGB and NDVI maps seems to be the best method to monitor wear and tear on the vegetation caused by visitors. Finally, we tried to estimate the surface soil moisture content based on temperature rise and the Temperature Vegetation Dryness Index (TVDI), but did not achieve any meaningful connection between TVDI and on-site soil moisture measurements. Ultimately, our results pointed to a limited archaeological applicability of the TVDI method in Arctic contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/drones7020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/drones7020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Elsevier BV Authors: Poul Alberg Østergaard; Anders N. Andersen;Abstract District heating (DH) enables the utilisation and distribution of heating from sources unfeasible for stand-alone applications and combined with cogeneration of heat and power (CHP), has been the cornerstone of Denmark’s realisation of a steady national primary energy supply over the last four decades. However, progressively more energy-efficient houses and a steadily improving heat pump (HP) performance for individual dwellings is straining the competitive advantage of the CHP–DH combination as DH grid losses are growing in relative terms due to decreasing heating demands of buildings and relatively high DH supply temperatures. A main driver for the DH water temperature is the requirements for domestic hot water (DHW) production. This article investigates two alternatives for DHW supply: (a) DH based on central HPs combined with a heat exchanger, and (b) a combination of DH based on central HPs and a small booster HP using DH water as low-temperature source for DHW production. The analyses are conducted using the energyPRO simulation model and are conducted with hourly varying factors; heating demands, DH grid losses, HP coefficient of performance (COP) and spot market prices in order to be able to analyse the relative performance of the two options and their performance over the year. Results are also compared to individual boilers and individual HPs. The results indicate that applying booster HPs enables the DH system to operate at substantially lower temperature levels, improving the COP of central DH HPs while simultaneously lowering DH grid losses significantly. Thus, DH performance is increased significantly. Additionally, performance for the DH HP with booster combination is considerably better than individual boiler or HP solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Authors: Pedro Cabrera; Henrik Lund; José A. Carta;This paper presents a new method, based on the Smart Energy Systems concept. The aim is to increase the share of renewable energy penetration on islands. The method is applied to the island of Gran Canaria (Spain), considering the entire energy system of the island. Several smart renewable energy strategies are proposed following a cross-sectoral approach between the electricity, heating/cooling, desalination, transport and gas sectors. The different smart renewable energy strategies were applied in a series of steps, while looking for a transition from the current energy system to a nearly 100% renewable energy system. Based on the results, the study concludes that the suggested method is applicable for increasing renewable integration on islands and can potentially be used in helping energy planners to take decisions about priorities in development of the sector to improve such integration. The results indicate that, for the case of Gran Canaria, a 75.9% renewable energy system could be attained with technologies that can be implemented at present. Furthermore, it is shown that a nearly 100% renewable energy system in Gran Canaria is technically feasible and could be achieved if certain technologies acquire greater maturity. © 2018 Elsevier Ltd 443 421 2,048 5,537 Q1 Q1 SCIE
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:MDPI AG Funded by:EC | BACWIREEC| BACWIREBorjas, Zulema; Ortiz, Juan M.; Aldaz Riera, Antonio; Feliu, Juan M.; Esteve-Núñez, Abraham;doi: 10.3390/en81212416
Microbial electrochemical technologies (METs) constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD) removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC) followed in time by a microbial fuel cell (MFC) to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Wen-Wen Guo; Lei Jin; Wang Li; Wen-Ting Wang;Climate change and human activities are two major drivers of grasslands degradation. Understanding the vulnerability of grasslands to both drives is of great importance for grassland conservation. This research established a vulnerability assessment model with historical and future the Normalized Difference Vegetation Index (NDVI), which was predicted by an optimized spatiotemporal NDVI prediction model, and then examined the vulnerability of grasslands under climate change and human activities in Gannan Prefecture on the north-eastern Qinghai-Tibet Plateau. Our results show that Gannan grasslands would show a vulnerability pattern of higher in the west and lower in the east under climate change and human activities. More than 46 % and 17 % of the region will become highly and medium vulnerable areas in the future, mainly concentrated in Maqu, Luqu and Xiahe counties in the west, southwest and northwest of Gannan. Specifically, the vulnerability is the lowest under the future climate scenario of moderate carbon emissions (i.e. RCP 4.5). Land use types such as forest land, unutilized land and cultivated land conversion to grassland could partially offset the vulnerability mainly caused climate change, while the conversion of grassland to unutilized land, forest land and cultivated land would increase the vulnerability of grassland. Our results would help to deepen the understanding of the patterns and main drivers of Gannan grasslands vulnerability under the impacts of climate change and human activities, and provide theoretical basis for the development of corresponding grassland management policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2023.110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2023.110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Brazil, United KingdomPublisher:Elsevier BV Authors: Devika Kannan; Charbel José Chiappetta Jabbour; Charbel José Chiappetta Jabbour; Lara Bartocci Liboni Amui; +3 AuthorsDevika Kannan; Charbel José Chiappetta Jabbour; Charbel José Chiappetta Jabbour; Lara Bartocci Liboni Amui; Lara Bartocci Liboni Amui; Ana Beatriz Lopes de Sousa Jabbour; Ana Beatriz Lopes de Sousa Jabbour;handle: 11449/178424 , 1893/23947
Sustainability is a managerial trend that plays an important role in the contemporary organizational strategy. A company’s capability to make sustainability more dynamic and integrated with strategies, transforming it into a business asset, has yet to be studied. This process of adaptation is reflected through innovative practices. However, there is still a gap between these practices and the organization’s strategies and capabilities. The aim of this work was to conduct a systematic literature review of the dynamic capabilities for sustainability. Afterward, it was possible to systematize the available knowledge, assessing the current lack of research integrating both themes. The mainstream literature was classified and coded, resulting in a framework for what has been done to date, with recommendations to guide future research. Results show that more research is needed on dynamic capabilities for sustainability, especially in emerging economies in general. Future studies should also consider mixed methodologies and comparative perspectives in multiples sectors or in the services sector. There’s also space to discuss managerial innovations toward sustainability through research alliances between different institutions around the world. In short, there are few studies that connect both themes— corporate sustainability and dynamic capabilities—and for this reason there is an opportunity for future studies seeking to identify what kind of dynamic capabilities can be developed to more effectively overcome the emerging sustainability challenges.
CORE arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.07.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 11visibility views 11 download downloads 192 Powered bymore_vert CORE arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.07.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dorte Skaarup Østergaard; Kevin Michael Smith; Michele Tunzi; Svend Svendsen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Jørgen Hollesen; Malte Skov Jepsen; Hans Harmsen;Over the past decades, climate change has accelerated the deterioration of heritage sites and archaeological resources in Arctic and subarctic landscapes. At the same time, increased tourism and growing numbers of site visitors contribute to the degradation and manipulation of archaeological sites. This situation has created an urgent need for new, quick, and non-invasive tools and methodologies that can help cultural heritage managers detect, monitor, and mitigate vulnerable sites. In this context, remote sensing and the applications of UAVs could play an important role. Here, we used a drone equipped with an RGB camera and a single multispectral/thermal camera to test different possible archeological applications at two well-known archaeological sites in the UNESCO World Heritage area of Kujataa in south Greenland. The data collected were used to test the potential of using the cameras for mapping (1) ruins and structures, (2) the impact of human activity, and (3) soil moisture variability. Our results showed that a combination of RGB and digital surface models offers very useful information to identify and map ruins and structures at the study sites. Furthermore, a combination of RGB and NDVI maps seems to be the best method to monitor wear and tear on the vegetation caused by visitors. Finally, we tried to estimate the surface soil moisture content based on temperature rise and the Temperature Vegetation Dryness Index (TVDI), but did not achieve any meaningful connection between TVDI and on-site soil moisture measurements. Ultimately, our results pointed to a limited archaeological applicability of the TVDI method in Arctic contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/drones7020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/drones7020115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu