- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 6. Clean water
- BD
- EC
- English
- Energy Research
- 7. Clean energy
- 6. Clean water
- BD
- EC
- English
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:International Journal of Sustainable Energy Planning and Management doi: 10.5278/ijsepm.3324
This research paper aims first to present in a digital map a class information about surface temperature in domestic buildings by means of thermal imagery. The classes are relative to the particular temperature distribution and for the particular night of the survey. Classification assigns every pixel into one of five classes based on where the pixel falls in the histogram, into an integer between 1 and 5, with 1 representing being the “coolest” pixels and 5 being the “hottest” resolution, based on a case study acquired over Newcastle upon Tyne (United Kingdom). The ultimate aim is combine this information with building level data set for Newcastle and adds on the energy modelling aspect through linking with the English House Survey (EHS) as input to the Cambridge Housing Model (CHM). This provides the means to produce building level energy use estimates and surface temperature, which in turn can be analysed both spatially and aspatially. This building level approach provides the potential for energy planners and other bodies to model energy interventions measures with flexibility in scale and to potentially adapt plans to the spatial variability of the local area characteristics. International Journal of Sustainable Energy Planning and Management, Vol 22 (2019)
International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5278/ijsepm.3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:WIP Authors:Mamunur Rahaman;
Mohaimenul Islam; Arbab Chowdhury; Md. Mosaddequr Rahman;Mamunur Rahaman
Mamunur Rahaman in OpenAIREIn recent days CZTS based thin film solar cells have attracted much attention due to their favorable electrical and optical properties, low cost and non-toxicity. A maximum laboratory efficiency of 10-12% has been reported for these types of cells. As the cells are subjected to much higher temperatures during outdoor operation, it is important to understand how CZTS cells will perform outdoor. This work investigates the effect of varying temperature on the different components of the dark current, as well as their effects on the cell performance. Among the different components of the dark current, trap-assisted tunneling recombination, thermionic emission and interface recombination are found to have significant contribution to the dark current while thermionic emission is found to be the dominating loss mechanism at high temperature. A calculation of cell efficiency at different temperatures show that the cell efficiency decreases from about 16.3% at 0°C to about only 7.3% at 75 °C. 35th European Photovoltaic Solar Energy Conference and Exhibition; 899-902
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 2017 Italy, Italy, Germany, United Kingdom, United Kingdom, France, United Kingdom, Germany, United Kingdom, Italy, United KingdomPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAndrea Bocci; Adomas Jelinskas; Vasiliki A Mitsou; Ryunosuke Iguchi; Teresa Lenz; Srinivasan Rajagopalan; Axel König; Markus Nordberg; Jos Vermeulen; Antonio Policicchio; Louis Helary; Bartosz Sebastian Dziedzic; Johannes Erdmann; Caterina Doglioni; Fernando Barreiro; Stefan Schlenker; Kunihiro Nagano; Tulin Varol; Alexander Khodinov; Brian Alexander Long; Eckhard von Toerne; Edisher Tskhadadze; Scott Snyder; Geert-Jan Besjes; Dms Sultan; Richard Nickerson; Hector De la Torre; David Hohn; Liza Mijović; Sebastien Prince; Anjishnu Bandyopadhyay; Carlo Varni; Tony Doyle; Arthur James Horton; Maximiliano Sioli; Urmila Soldevila; Marcia Begalli; Bruce Barnett; Tomas Slavicek; Elizabeth Brost; Alexander Zaitsev; Matteo Franchini; Yohei Yamaguchi; S. R. Hou; Blake Burghgrave; Trygve Buanes; Alvaro Lopez Solis; Yuri Kulchitsky; Michael Begel; Dilia Maria Portillo Quintero; Marco Milesi; Simon Berlendis; Olivier Le Dortz; Yoshiji Yasu; Antonio Limosani; Kun Liu; Mario Lassnig; Emily Nurse; Alessandro Cerri; Kaushik De; Maximilian Hils; Bogdan Malaescu; Yosuke Takubo; M. Franklin; Jacob Searcy; Nicolas Viaux Maira; Michael Rijssenbeek; Tairan Xu; Christian Weiser; Claire Gwenlan; Steve McMahon; Matthew Berg Epland; Edward Moyse; Michael David Werner; Jie Yu; Jorge Lopez; David Lynn; Borut Paul Kerševan; Martin Spousta; Clara Troncon; Jing Wang; Giacinto Piacquadio; Karel Smolek; Fabio Cerutti; Dimitrios Iliadis; Xiandong Zhao; Peter van Gemmeren; Stamatios Gkaitatzis; Sergei Chekanov; Tsz Yu Ng; Yoav Afik; David Francis; Ralf Hertenberger; Michael Adersberger; Maia Mosidze; David Vazquez Furelos; Vincent Pascuzzi; Andreas Petridis; Timothy Barklow; Nurcan Ozturk; Debarati Roy; Simonetta Gentile; Shuwei Ye; Wenhao Xu; Laurent Vacavant; Sabrina Sacerdoti; Stewart Martin-Haugh; Peter Krieger; Cunfeng Feng; Hasko Stenzel; Rui Zhang; Hal Evans; Angela Maria Burger; Mykhailo Lisovyi; Robert Richter; Rajaa Cherkaoui El Moursli; Matteo Negrini; Pavol Strizenec; Asma Hadef; C. Haber; Sabrina Groh; Andrea Rodriguez Perez; William Joseph Johnson; Koji Terashi; Mirkoantonio Casolino; James Ferrando; Jennifer Kathryn Roloff; Emma Torró Pastor; Piotr Andrzej Janus; Attila Krasznahorkay; P. Sinervo; Gabriella Gaudio; Shunichi Akatsuka; R. D. Kass; Alexander Cheplakov; Ping-Kun Teng; Cyril Becot; Haonan Lu; Phillip Gutierrez; Andrea Ventura; Nikolai Fomin; Dominic Hirschbuehl; Yun-Ju Lu; Cristian Stanescu; Francisca Garay Walls; Kuan-yu Lin; Baojia Tong; Huan Ren; Tomas Davidek; Stefan Kluth; Mikhail Ivanovitch Gostkin; Kilian Rosbach; James Robinson; Werner Wiedenmann; Stephanie Majewski; Michael Düren; Noemi Calace; Aaron James Armbruster; Anatoly Kozhin; Petr Gallus; Huacheng Cai; Katsufumi Sato; Pawel Malecki; Andrea Sansoni; Chiao-ying Lin; Attilio Picazio; Monika Wielers; Sarah Williams; Regina Moles-Valls; Frank Winklmeier; Ljiljana Simic; Boris Lemmer; Stephen Lloyd; Jane Cummings; Eric Hayato Takasugi; Wendy Taylor; Antonio Onofre; Dmitriy Maximov; Felix Mueller; Katharina Schleicher; Elisabetta Vilucchi; Qun Ouyang; Deepak Kar; Nacim Haddad; German D Carrillo-Montoya; Sina Bahrasemani; Masahiro Kuze; Harinder Singh Bawa; Daniel Joseph Antrim; Carl Jeske; Rebecca Anne Linck; Paolo Francavilla; Ruchi Gupta; Kristof Schmieden; Federico Lasagni Manghi; Sergey Denisov; Alexander Kupco; Ian Connelly; Peter Watkins; Giuliano Gustavino;handle: 2434/587222 , 11571/1270926 , 2108/197596
A measurement of the production of three isolated photons in proton–proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{−1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system. Physics letters / B 781, 55 - 76 (2018). doi:10.1016/j.physletb.2018.03.057 Published by North-Holland Publ., Amsterdam
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Taylor's University Authors: M. F. I. AL IMAM; MOHD. RAFIQUL ALAM BEG; M. S. RAHMAN;In this study, the performance of a photovoltaic-thermal solar collector with compound parabolic collector for clear day in winter and summer season was investigated. Phase change material storage unit, compound parabolic collector unit, photovoltaic thermal unit were integrated into one piece to reduce the area to get higher performance and better concentration ratio. The performance of water flow rate, heat removal factor, amount of energy storage of the collector in winter season and comparison of temperature variation, total generated energy, performance factor in summer season by varying different parameters were evaluated. Water flow rate increases up to 0.004 kg/s corresponding to the thermal efficiency of around 42%. Heat removal factor for thermal collector was in the range of 0.94-0.96, which indicates better energy gain of the system and effective outlet water temperature was found 55 0C in winter season. The total generated thermal energy 1500W and maximum performance factor of a collector was 0.0135 kW-1m2 in summer season. Finally total efficiency of a collector varies from 58% -68% in summer season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Authors: Ashfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; +4 AuthorsAshfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; Md. Rokib Hasan; Al Jubair Hossain; Sokhorio Margon D'Costa; A.S.M. Shakil Imam;The renewable energy sources like wind and solar energies can be combined to increase the total power generation and thereby increase the efficiency of the system. The combination also provides a means to overcome the intermittent nature of the solar and wind renewable energy sources, since one source can be used for power generation when other is not available. AC-DC converters are used convert the alternating voltage of the wind generator to a constant DC value which can be used to charge the batteries or later converted to AC voltage to drive AC loads. A Maximum Power Point Tracking (MPPT) system using boost converter is designed to extract maximum possible power from the sun when it is available. This method provides better harmonic reduction since Harmonic content is detrimental for the generator lifespan, heating issues, and efficiency. Simulations are carried out in PSIM software and MATLAB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 55visibility views 55 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2023Publisher:Zenodo Authors:Chicaiza-Ortiz, Cristhian;
Ortiz, Antonella;Chicaiza-Ortiz, Cristhian
Chicaiza-Ortiz, Cristhian in OpenAIREArellano, Diana;
Jingxin Zhang;Arellano, Diana
Arellano, Diana in OpenAIREThe Amazon rainforest regulates the global temperature and is one of the most biodiverse places on Earth. Nonetheless, deforestation, land-use changes, monoculture, large distances from community to community, limited agriculture production and climate change effects present substantial obstacles for the region. In addition, many Amazonian indigenous communities suffer from energy poverty and lack regular access to electricity, proper wastewater treatment as well as adequate residue management. Sustainable energy solutions based on biowaste might help Amazonian communities manage both environmental and socioeconomic concerns. The goal of this research is to figure out if biowaste could be used by Amazonian communities as a source of renewable energy. Biowaste consists of organic materials that can produce biogas and biofuels, such as agricultural residues, animal waste, and food manure. Then, the environmental and social implications of biowaste-based renewable energy plants in the Amazon Region of Ecuador were assessed, which look to counteract the fossil fuel dependence. This type of study illustrates the potential for biowaste-based energy alternatives to provide rural communities with affordable energy while lowering greenhouse gas emissions and promoting sustainable land use. It was concluded that biowaste-based renewable energy alternatives have the potential to alleviate both the environmental and socioeconomic concerns facing Amazonian communities. Government policy, community technical training, and project monitoring for biochemical and thermal projects should all support it. By redefining biowaste-based renewable energy, it is possible to encourage sustainable development in the region while protecting the Amazon rainforest's vital ecosystem services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7948201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7948201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Zenodo Authors:Hoque, Mohammad Rashedul;
Hasan, Saad; Banik, Nidhu Lal; Ahmed, Nisar; +1 AuthorsHoque, Mohammad Rashedul
Hoque, Mohammad Rashedul in OpenAIREHoque, Mohammad Rashedul;
Hasan, Saad; Banik, Nidhu Lal; Ahmed, Nisar; Chowdhury, Shafkat Reza;Hoque, Mohammad Rashedul
Hoque, Mohammad Rashedul in OpenAIREElectricity shortage has become a major challenge to continued economic growth in Bangladesh. The country is growing in terms of GDP growth at a rate of 7% a year. Bangladesh is expected to move towards 23rd position globally by 2050 from its position 31 in 2014, in terms of GDP at purchasing power parity (PPP). The demand for electricity is forecasted to be 61,164 MW within the same period. Currently, electricity generation in Bangladesh is highly dependent on fossil fuels, nearly 59% is produced from natural gas followed by furnace oil, diesel and coal, while only 3% from renewables. Electricity generation is the largest single source of GHG (greenhouse gas) emissions in Bangladesh, and thus finding alternative energy source has become imperative for the country. Solar and nuclear energy sources have the potentials to be utilized for low-carbon energy sector and thus for a sustainable economic development in Bangladesh. Barriers to solar and nuclear energy will be reduced significantly in coming years with technological advancement. However, energy policies need to be revised to facilitate low-carbon energy technologies. Besides, more international collaboration is highly required not only to import new technologies but also to enhance the capacity of research and development (R&D) as well as overall adoption of the technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Journal 2019Publisher:Unpublished Authors: Irene Peters; Hannes Seller; Ivan Dochev;Because of the physical properties of heat energy, information about the spatial pattern of building heat demand is important for designing climate protection measures in the heating sector (efficiency improvements and renewable energy integration). Many cities in Germany currently prepare ‘heat demand cadastres’ – thematic maps, depicting building heat demand. The growing trend towards open data points into the direction of making these cadastres public, so that different actors can make use of them. However, making such data public may violate the legal requirement of protecting private data. We present a way of tackling this problem with an approach for the aggregation of spatially represented heat demand. Using an algorithm based on graph theory, we group buildings such that the tracing of energetic characteristics and behaviour to individuals is rendered unfeasible. Our method also allows additional constraints to be introduced, for example, aggregating with respect to plot boundaries. We discuss how the building groups can be visualised in a map by presenting a method of generating customised geometries for each group. Finally, we present a visualisation of both specific heat demand (in kWh/(m2*a)) and total heat demand (in kWh/a) in one and the same map. This aids the analysis of more complex questions involving energy efficiency and heat supply. International Journal of Sustainable Energy Planning and Management, Vol 24 (2019)
International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2022Publisher:Code Ocean Quasi-dynamic energy flow calculation of quality-regulated district heating network.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24433/co.7016208.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24433/co.7016208.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Md Emran Hossain; Saurav Biswas;The main aim of this work is to create a novel intelligent power management system that can identify synchronization failures of any external supply source to the power grid by sensing frequency and voltage irregularities. Furthermore, in a three-phase system, an automated phase changeover of the load from the missing phase to the next available phase is included to provide continuous AC mains supply. In addition, a solar module with suitable storage capacity is attached to the proposed system to reduce grid energy use and play main energy sources to maximize green energy usage. The electrical loads can be protected by automatically shutting down the system utilizing microcontroller programming. The LCD shows the current supply voltage as well as the overall system's operating frequency. The complete unit will be shut down by the intended controlling unit if any of these parameters increases or lowers over the limit of every separate incoming source, and the system will automatically reconnect following stabilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4904593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 51visibility views 51 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4904593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu