- home
- Advanced Search
- Energy Research
- chemical sciences
- EC
- Energies
- Energy Research
- chemical sciences
- EC
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors:Jaime de la Peña Llerandi;
Jaime de la Peña Llerandi
Jaime de la Peña Llerandi in OpenAIRECarlos Sancho de Mingo;
José Carpio Ibáñez;Carlos Sancho de Mingo
Carlos Sancho de Mingo in OpenAIREdoi: 10.3390/en12142836
Energy storage in an uninterruptible power supply (UPS) is one of the most frequent applications of batteries. This can be found in hospitals, communication centers, public centers, ships, trains, etc. Most frequent industrial methods for battery state-of health estimation require a technician to move to the battery’s location and, in some cases, require the use of heavy equipment and disconnection of the battery from the UPS. For example, in railway applications, trains must stop at the maintenance depot producing significant total costs. This article proposes a new method to assess a battery’s health by measuring the battery’s internal resistance, based on the measurement of its voltage ripple in response to the current ripple imposed by the charger which in most UPS applications is permanently connected to the battery. Unlike most traditional methods, this system makes it possible a continuous on-line and on-board monitoring, and, therefore, it eases condition-based maintenance (CBM). To verify its viability, a low cost measuring prototype has been built and measurements in a railway battery with its charger have been carried out.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | CO2LIFEEC| CO2LIFEAuthors:Mar Garcia Alvarez;
Mar Garcia Alvarez
Mar Garcia Alvarez in OpenAIREVida Sang Sefidi;
Marine Beguin; Alexandre Collet; +2 AuthorsVida Sang Sefidi
Vida Sang Sefidi in OpenAIREMar Garcia Alvarez;
Mar Garcia Alvarez
Mar Garcia Alvarez in OpenAIREVida Sang Sefidi;
Marine Beguin; Alexandre Collet;Vida Sang Sefidi
Vida Sang Sefidi in OpenAIRERaul Bahamonde Soria;
Raul Bahamonde Soria
Raul Bahamonde Soria in OpenAIREPatricia Luis;
Patricia Luis
Patricia Luis in OpenAIREdoi: 10.3390/en15072682
A new crystallization process for sodium bicarbonate (NaHCO3) was studied, proposing the use of osmotic membrane distillation crystallization. Crystallization takes place due to the saturation of the feed solution after water evaporation on the feed side, permeating through the membrane pores to the osmotic side. The process operational parameters, i.e., feed and osmotic velocities, feed concentration, and temperature were studied to determine the optimal operating conditions. Regarding the feed and osmotic velocities, values of 0.038 and 0.0101 m/s, respectively, showed the highest transmembrane flux, i.e., 4.4 × 10−8 m3/m2·s. Moreover, study of the temperature variation illustrated that higher temperatures have a positive effect on the size and purity of the obtained crystals. The purity of the crystals obtained varied from 96.4 to 100% In addition, the flux changed from 2 × 10−8 to 7 × 10−8 m3/m2·s with an increase in temperature from 15 to 40 °C. However, due to heat exchange between the feed and the osmotic solutions, the energy loss in osmotic membrane distillation crystallization is higher at higher temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors:Miguel A. Taco-Ugsha;
Cristian P. Santacruz;Miguel A. Taco-Ugsha
Miguel A. Taco-Ugsha in OpenAIREPatricio J. Espinoza-Montero;
Patricio J. Espinoza-Montero
Patricio J. Espinoza-Montero in OpenAIREdoi: 10.3390/en13040785
Photovoltaic energy presents environmental advantages; however, these advantages are limited by the cost of manufacturing solar cells and in many cases, scarce or dangerous materials are incorporated. Therefore, the use of natural dyes from mortiño (Vaccinium floribundum) as sensitizers in solar cells is proposed. The dyes were extracted by maceration in acidified methanol (HCl, citric acid and trifluoroacetic acid TFA) and were characterized by High-Performance Liquid Chromatography (HPLC), Thin-Layer Chromatography (TLC) and spectrometric methods (UV-Vis, IR and MS-MALDI). The construction and characterization of cells were in standard conditions. The study confirms that pigments in mortiño are flavonoids of the anthocyanidin group as: cyanidin-3-galactoside, and cyanidin-3-arabinoside. The efficiency of solar cells was between 0.18–0.26%; the extraction with TFA in methanol leads to the best performance. Although they have low power conversion efficiency, mortiño dyes could be an alternative to artificial sensitizers for solar cell technologies because they are harmless and abundant substances.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu