Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
536 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • EC

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Katiuska Alexandrino;
    Katiuska Alexandrino
    ORCID
    Harvested from ORCID Public Data File

    Katiuska Alexandrino in OpenAIRE
    Katiuska Alexandrino; Rafael Bilbao; Ángela Millera; +1 Authors

    Alkylated furan derivatives, such as 2,5-dimethylfuran (2,5-DMF) and 2-methylfuran (2-MF), have shown, at laboratory scale, a relatively high tendency to form soot. However, soot emissions from die...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Fuelsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Fuels
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Fuelsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Fuels
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Katiuska Alexandrino;
    Katiuska Alexandrino
    ORCID
    Harvested from ORCID Public Data File

    Katiuska Alexandrino in OpenAIRE
    Katiuska Alexandrino; Rafael Bilbao; Ángela Millera; +1 Authors

    Alkylated furan derivatives, such as 2,5-dimethylfuran (2,5-DMF) and 2-methylfuran (2-MF), have shown, at laboratory scale, a relatively high tendency to form soot. However, soot emissions from die...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Fuelsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Fuels
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Fuelsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Fuels
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lyubov Pyha; Juraj Durove; Yevhen Ogorodnyk; orcid Hennadii Haiko;
    Hennadii Haiko
    ORCID
    Harvested from ORCID Public Data File

    Hennadii Haiko in OpenAIRE

    The concept and a new method for the shielded development of bottom gas hydrates have been proposed, the technological phases and constructive elements of their implementation have been substantiated. The research provides for the realization of the idea suggesting the simultaneous dissociation of the vast areas of a gas hydrate deposit, management of the targeted process of the penetration of methane recovered from gas hydrates into water space and its accumulation under the extensive gas-collecting shield wherefrom it is removed by bottom pipe transportation facilities. To do hydraulic fracturing, a well is drilled into the plane of the junction of the surface of a gas hydrate deposit and the rocks of a roof, the open system of fissures in the rocks of a roof is made through which produced gas is released to a gas-collecting blanket in a water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solid State Phenomena
    Article . 2018 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solid State Phenomena
      Article . 2018 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lyubov Pyha; Juraj Durove; Yevhen Ogorodnyk; orcid Hennadii Haiko;
    Hennadii Haiko
    ORCID
    Harvested from ORCID Public Data File

    Hennadii Haiko in OpenAIRE

    The concept and a new method for the shielded development of bottom gas hydrates have been proposed, the technological phases and constructive elements of their implementation have been substantiated. The research provides for the realization of the idea suggesting the simultaneous dissociation of the vast areas of a gas hydrate deposit, management of the targeted process of the penetration of methane recovered from gas hydrates into water space and its accumulation under the extensive gas-collecting shield wherefrom it is removed by bottom pipe transportation facilities. To do hydraulic fracturing, a well is drilled into the plane of the junction of the surface of a gas hydrate deposit and the rocks of a roof, the open system of fissures in the rocks of a roof is made through which produced gas is released to a gas-collecting blanket in a water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solid State Phenomena
    Article . 2018 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solid State Phenomen...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solid State Phenomena
      Article . 2018 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Claus Uwe Matzer;
    Claus Uwe Matzer
    ORCID
    Harvested from ORCID Public Data File

    Claus Uwe Matzer in OpenAIRE
    orcid Zamir Mera;
    Zamir Mera
    ORCID
    Harvested from ORCID Public Data File

    Zamir Mera in OpenAIRE
    Zamir Mera; Stefan Hausberger; +1 Authors

    Abstract In this study, the influence of real-world conditions on the performance of a selective catalytic reduction (SCR) system in a Euro-6 diesel passenger car was analysed. NOx emissions and exhaust gas temperatures were recorded before and after the SCR system during real-world driving tests. The results showed that engine-out NOx emissions were positively correlated with vehicle specific power (VSP). The average NOx reductions (deNOx) of the SCR were 82.8%, 91.7%, and 85.5% for SCR-inlet gas temperatures below, within, and above the thermal window of 220–340 °C, respectively. The 92% of the tailpipe NOx peaks appeared under high power (VSP ≥ 10 W kg−1) and an insufficient deNOx level. Urban driving and long downhill sections in rural conditions caused cooling down of the SCR-inlet gas to below 200 °C, where the deNOx efficiency decreased and became dependent on the exhaust mass flow rate. To estimate the NOx benefit and CO₂ penalty via electrical heating of the SCR-inlet exhaust gas, the vehicle, the real driving dynamics, and the heating were simulated in Passenger car and heavy-duty emission model (PHEM). The minimum threshold of 200 °C resulted in the best NOx/CO₂ trade-off, reducing on average 4.7 mg of NOx per gram of CO₂.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Claus Uwe Matzer;
    Claus Uwe Matzer
    ORCID
    Harvested from ORCID Public Data File

    Claus Uwe Matzer in OpenAIRE
    orcid Zamir Mera;
    Zamir Mera
    ORCID
    Harvested from ORCID Public Data File

    Zamir Mera in OpenAIRE
    Zamir Mera; Stefan Hausberger; +1 Authors

    Abstract In this study, the influence of real-world conditions on the performance of a selective catalytic reduction (SCR) system in a Euro-6 diesel passenger car was analysed. NOx emissions and exhaust gas temperatures were recorded before and after the SCR system during real-world driving tests. The results showed that engine-out NOx emissions were positively correlated with vehicle specific power (VSP). The average NOx reductions (deNOx) of the SCR were 82.8%, 91.7%, and 85.5% for SCR-inlet gas temperatures below, within, and above the thermal window of 220–340 °C, respectively. The 92% of the tailpipe NOx peaks appeared under high power (VSP ≥ 10 W kg−1) and an insufficient deNOx level. Urban driving and long downhill sections in rural conditions caused cooling down of the SCR-inlet gas to below 200 °C, where the deNOx efficiency decreased and became dependent on the exhaust mass flow rate. To estimate the NOx benefit and CO₂ penalty via electrical heating of the SCR-inlet exhaust gas, the vehicle, the real driving dynamics, and the heating were simulated in Passenger car and heavy-duty emission model (PHEM). The minimum threshold of 200 °C resulted in the best NOx/CO₂ trade-off, reducing on average 4.7 mg of NOx per gram of CO₂.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aleksandr Sokolyanskii; orcid Anzhelika Parkhomenko;
    Anzhelika Parkhomenko
    ORCID
    Harvested from ORCID Public Data File

    Anzhelika Parkhomenko in OpenAIRE
    orcid Artem Tulenkov;
    Artem Tulenkov
    ORCID
    Harvested from ORCID Public Data File

    Artem Tulenkov in OpenAIRE

    In this paper, the functional features of IoT services, as well as the criteria for their evaluation and selection were investigated. Existing international standards of cloud services quality for IoT systems have been analysed. A recommendation technique has been developed for selecting an IoT service for storing, processing and visualizing data from the Smart House system. Practical examples of IoT services and cloud platforms usage for the remote laboratory Smart House & IoT are shown.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/stc-cs...
    Conference object . 2019 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/stc-cs...
      Conference object . 2019 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aleksandr Sokolyanskii; orcid Anzhelika Parkhomenko;
    Anzhelika Parkhomenko
    ORCID
    Harvested from ORCID Public Data File

    Anzhelika Parkhomenko in OpenAIRE
    orcid Artem Tulenkov;
    Artem Tulenkov
    ORCID
    Harvested from ORCID Public Data File

    Artem Tulenkov in OpenAIRE

    In this paper, the functional features of IoT services, as well as the criteria for their evaluation and selection were investigated. Existing international standards of cloud services quality for IoT systems have been analysed. A recommendation technique has been developed for selecting an IoT service for storing, processing and visualizing data from the Smart House system. Practical examples of IoT services and cloud platforms usage for the remote laboratory Smart House & IoT are shown.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/stc-cs...
    Conference object . 2019 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/stc-cs...
      Conference object . 2019 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jesus R. Melendez;
    Jesus R. Melendez
    ORCID
    Harvested from ORCID Public Data File

    Jesus R. Melendez in OpenAIRE
    Bence Mátyás; orcid Sufia Hena;
    Sufia Hena
    ORCID
    Harvested from ORCID Public Data File

    Sufia Hena in OpenAIRE
    orcid Daniel A. Lowy;
    Daniel A. Lowy
    ORCID
    Harvested from ORCID Public Data File

    Daniel A. Lowy in OpenAIRE
    +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    96
    citations96
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jesus R. Melendez;
    Jesus R. Melendez
    ORCID
    Harvested from ORCID Public Data File

    Jesus R. Melendez in OpenAIRE
    Bence Mátyás; orcid Sufia Hena;
    Sufia Hena
    ORCID
    Harvested from ORCID Public Data File

    Sufia Hena in OpenAIRE
    orcid Daniel A. Lowy;
    Daniel A. Lowy
    ORCID
    Harvested from ORCID Public Data File

    Daniel A. Lowy in OpenAIRE
    +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    96
    citations96
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Iryna Sukhodub; Inna Bilous; Valerii Ivanovych Deshko;

    Abstract The energy efficiency is one of the most important issues nowadays; the problem with the buildings heating is especially relevant for Ukraine. The aim of the paper is to develop a convenient tool building energy performance analysis based on regression model for internal air temperature prediction, depending on a number of internal and external influential factors. The external climatic factors, such as outside air temperature, wind speed and direction, solar heat gains depending on building fenestration surfaces orientation, are considered. Internal factors include heating load, number of floors, air exchange rate etc. In order to achieve the goal, a room dynamic simulation model is created in the EnergyPlus software. A number of simulations are carried out based on the created building energy model . The individual and aggregate selected factors influence on inside air temperature change is considered. The general structure of the multivariate nonlinear regression model for inside air temperature determination is analyzed and selected. Constant coefficients are obtained for each selected influencing factor, and verification of the received nonlinear regression model is performed based on simulation data using January climatic data from the IWEC file. The adequacy of the obtained regression model is estimated by the corrected determination coefficient (R 2 = 0.981) and Fisher's criterion (F = 1324.3), which indicates the high accuracy of the obtained multivariate nonlinear regression. The proposed approach for regression model creation can be used for other architectural and thermal properties of building envelope.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Building Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    53
    citations53
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Building Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Iryna Sukhodub; Inna Bilous; Valerii Ivanovych Deshko;

    Abstract The energy efficiency is one of the most important issues nowadays; the problem with the buildings heating is especially relevant for Ukraine. The aim of the paper is to develop a convenient tool building energy performance analysis based on regression model for internal air temperature prediction, depending on a number of internal and external influential factors. The external climatic factors, such as outside air temperature, wind speed and direction, solar heat gains depending on building fenestration surfaces orientation, are considered. Internal factors include heating load, number of floors, air exchange rate etc. In order to achieve the goal, a room dynamic simulation model is created in the EnergyPlus software. A number of simulations are carried out based on the created building energy model . The individual and aggregate selected factors influence on inside air temperature change is considered. The general structure of the multivariate nonlinear regression model for inside air temperature determination is analyzed and selected. Constant coefficients are obtained for each selected influencing factor, and verification of the received nonlinear regression model is performed based on simulation data using January climatic data from the IWEC file. The adequacy of the obtained regression model is estimated by the corrected determination coefficient (R 2 = 0.981) and Fisher's criterion (F = 1324.3), which indicates the high accuracy of the obtained multivariate nonlinear regression. The proposed approach for regression model creation can be used for other architectural and thermal properties of building envelope.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Building Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    53
    citations53
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Building Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Amir Mor-Mussery; Arie Budovsky; Stefan Leu;

    The correlations between perennials and the herbaceous productivity in patches occupied by them were previously studied and several descriptive models were defined. Yet these studies focused on either single or several species without analyzing higher numbers and ranking their effects. Here we describe a handy analytical methodology which allows separating the effects of each perennial species on herbaceous productivity at its respective patches from those of the others in a given area, even in case of complex patches containing several species. The described methodology also allows analysts to correlate the effect of perennials to their patch sizes and the respective herbaceous biomass. Additional mathematical analysis presented here succeeded in differentiating between the perennial species stand-alone presence effect on the herbaceous productivity and that attributed to the canopy size. In addition, the effects of location along the slope and its rockiness outlines were studied. As a case study, we chose representative sloped shrubland with rockiness outlines, located in Yattir farm, Northern Negev, Israel. Based on the described analyses we found that the species with the highest positive effects on the herbaceous productivity were Echinops polyceras, Echium angustifolium, and Salvia lanigera. Contradictory effects were observed in case of Thymelea hirsute, Anchusa ramosus, and Noaea mucronata. Collectively, the presented methodology could be an important management tool for monitoring the herbaceous biomass amounts in a given shrubland.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Manage...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Management
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Manage...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Management
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Amir Mor-Mussery; Arie Budovsky; Stefan Leu;

    The correlations between perennials and the herbaceous productivity in patches occupied by them were previously studied and several descriptive models were defined. Yet these studies focused on either single or several species without analyzing higher numbers and ranking their effects. Here we describe a handy analytical methodology which allows separating the effects of each perennial species on herbaceous productivity at its respective patches from those of the others in a given area, even in case of complex patches containing several species. The described methodology also allows analysts to correlate the effect of perennials to their patch sizes and the respective herbaceous biomass. Additional mathematical analysis presented here succeeded in differentiating between the perennial species stand-alone presence effect on the herbaceous productivity and that attributed to the canopy size. In addition, the effects of location along the slope and its rockiness outlines were studied. As a case study, we chose representative sloped shrubland with rockiness outlines, located in Yattir farm, Northern Negev, Israel. Based on the described analyses we found that the species with the highest positive effects on the herbaceous productivity were Echinops polyceras, Echium angustifolium, and Salvia lanigera. Contradictory effects were observed in case of Thymelea hirsute, Anchusa ramosus, and Noaea mucronata. Collectively, the presented methodology could be an important management tool for monitoring the herbaceous biomass amounts in a given shrubland.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Manage...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Management
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Manage...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Management
      Article . 2015 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Fausto Posso Rivera;
    Fausto Posso Rivera
    ORCID
    Harvested from ORCID Public Data File

    Fausto Posso Rivera in OpenAIRE
    Javier Zalamea; Juan L. Espinoza; orcid bw Luis G Gonzalez;
    Luis G Gonzalez
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Luis G Gonzalez in OpenAIRE

    The incorporation of Energy Storage Systems (ESS) in an electrical power system is studied for the application of Energy Time Shift (ETS) or energy arbitrage, taking advantage of the turbinable energy discharged in hydroelectric plants. For this, three storage systems were selected: Lithium-Ion Batteries (LIB), Vanadium Redox Flow Battery (VRFB), and Hydrogen Storage Systems (H2SS). The spilled turbinable energy available at the Paute Integral hydropower complex in the Republic of Ecuador is taken as the case study. Based on real data from the operation of these plants, a distinctive element of the study, the performance of the selected energy storage systems was analyzed applying the Analytic Hierarchy of Process for decision-making, where technical, economic, and environmental criteria were considered. Electrical energy stored during the early morning seeks to displace the thermal generation during peak hours, close to the demand centers. The results show that all the storage systems analyzed satisfy the required demand, although VRFB is recommended for the ETS. From an economic point of view, LIB represents the best alternative. From a technical point of view, H2SS is slightly superior, while prioritizing environmental aspects, VRFB technology prevails. However, the selection of the best ESS alternative must be continually evaluated, due to permanent technological changes. It is concluded that ESS represent a viable alternative to improve the operational performance of hydroelectric plants, meet the variability of demand, improve the quality of the electrical energy delivered, and displace the pollution-generation plants. Ingeniería y Tecnología Digital

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Fausto Posso Rivera;
    Fausto Posso Rivera
    ORCID
    Harvested from ORCID Public Data File

    Fausto Posso Rivera in OpenAIRE
    Javier Zalamea; Juan L. Espinoza; orcid bw Luis G Gonzalez;
    Luis G Gonzalez
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Luis G Gonzalez in OpenAIRE

    The incorporation of Energy Storage Systems (ESS) in an electrical power system is studied for the application of Energy Time Shift (ETS) or energy arbitrage, taking advantage of the turbinable energy discharged in hydroelectric plants. For this, three storage systems were selected: Lithium-Ion Batteries (LIB), Vanadium Redox Flow Battery (VRFB), and Hydrogen Storage Systems (H2SS). The spilled turbinable energy available at the Paute Integral hydropower complex in the Republic of Ecuador is taken as the case study. Based on real data from the operation of these plants, a distinctive element of the study, the performance of the selected energy storage systems was analyzed applying the Analytic Hierarchy of Process for decision-making, where technical, economic, and environmental criteria were considered. Electrical energy stored during the early morning seeks to displace the thermal generation during peak hours, close to the demand centers. The results show that all the storage systems analyzed satisfy the required demand, although VRFB is recommended for the ETS. From an economic point of view, LIB represents the best alternative. From a technical point of view, H2SS is slightly superior, while prioritizing environmental aspects, VRFB technology prevails. However, the selection of the best ESS alternative must be continually evaluated, due to permanent technological changes. It is concluded that ESS represent a viable alternative to improve the operational performance of hydroelectric plants, meet the variability of demand, improve the quality of the electrical energy delivered, and displace the pollution-generation plants. Ingeniería y Tecnología Digital

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jesús Casanova; orcid Zamir Mera;
    Zamir Mera
    ORCID
    Harvested from ORCID Public Data File

    Zamir Mera in OpenAIRE
    José-María López; orcid Natalia Fonseca;
    Natalia Fonseca
    ORCID
    Harvested from ORCID Public Data File

    Natalia Fonseca in OpenAIRE

    Abstract Exhaust aftertreatment systems are crucial to ensuring real-world NOx emission limits for motor vehicles. Operating conditions constrain the NOx reduction performance of aftertreatment devices. This study analysed real-world NOx emissions, tailpipe exhaust gas temperatures, and air-fuel ratios during cold start in a closed-loop urban route, followed by hot-start real driving emissions (RDE) tests. Five Euro-6b sport utility vehicles (SUV) were tested: two gasoline vehicles with three-way catalyst (TWC), namely, one gasoline direct injection (G-DI) and one hybrid electric vehicle (HEV); three diesel vehicles with different NOx control systems, namely, only exhaust gas recirculation (EGR), lean-burn NOx trap (LNT), and selective catalytic reduction (SCR). The only-EGR- and LNT-equipped diesel vehicles and the G-DI vehicle surpassed the NOx Euro 6 limits in all tested sections. For the same vehicles, the total RDE emission factors were 9.0, 7.4, and 5.0 times the Euro 6 limits, respectively. In contrast, the diesel vehicle with SCR had an RDE emission factor 1.0 times the limit, and the HEV exhibited very low emissions at approximately 2 mg NOx km−1. However, during the cold start phase (first 5 min), the emission levels of the SCR and HEV vehicles surpassed the Euro 6 limits by 2.7 and 1.1 times, respectively. Based on the measurements at the tailpipe, the results indicate that cold start, urban driving, and cooling conditions of aftertreatment devices can lead to a decrease in the NOx conversion efficiency of TWC and SCR systems. The air-fuel ratio was key for the NOx conversion in TWC aftertreatment. The large differences between G-DI and HEV vehicles were primarily attributed to the lean and rich operations of the G-DI and HEV engines, respectively. To comply with stringent future regulations, lean-burn engines would require diesel-like aftertreatment. SCR and hybrid vehicles would require a careful aftertreatment thermal management or heating to further exploit their potential for reducing emissions in urban areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Environm...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Environm...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jesús Casanova; orcid Zamir Mera;
    Zamir Mera
    ORCID
    Harvested from ORCID Public Data File

    Zamir Mera in OpenAIRE
    José-María López; orcid Natalia Fonseca;
    Natalia Fonseca
    ORCID
    Harvested from ORCID Public Data File

    Natalia Fonseca in OpenAIRE

    Abstract Exhaust aftertreatment systems are crucial to ensuring real-world NOx emission limits for motor vehicles. Operating conditions constrain the NOx reduction performance of aftertreatment devices. This study analysed real-world NOx emissions, tailpipe exhaust gas temperatures, and air-fuel ratios during cold start in a closed-loop urban route, followed by hot-start real driving emissions (RDE) tests. Five Euro-6b sport utility vehicles (SUV) were tested: two gasoline vehicles with three-way catalyst (TWC), namely, one gasoline direct injection (G-DI) and one hybrid electric vehicle (HEV); three diesel vehicles with different NOx control systems, namely, only exhaust gas recirculation (EGR), lean-burn NOx trap (LNT), and selective catalytic reduction (SCR). The only-EGR- and LNT-equipped diesel vehicles and the G-DI vehicle surpassed the NOx Euro 6 limits in all tested sections. For the same vehicles, the total RDE emission factors were 9.0, 7.4, and 5.0 times the Euro 6 limits, respectively. In contrast, the diesel vehicle with SCR had an RDE emission factor 1.0 times the limit, and the HEV exhibited very low emissions at approximately 2 mg NOx km−1. However, during the cold start phase (first 5 min), the emission levels of the SCR and HEV vehicles surpassed the Euro 6 limits by 2.7 and 1.1 times, respectively. Based on the measurements at the tailpipe, the results indicate that cold start, urban driving, and cooling conditions of aftertreatment devices can lead to a decrease in the NOx conversion efficiency of TWC and SCR systems. The air-fuel ratio was key for the NOx conversion in TWC aftertreatment. The large differences between G-DI and HEV vehicles were primarily attributed to the lean and rich operations of the G-DI and HEV engines, respectively. To comply with stringent future regulations, lean-burn engines would require diesel-like aftertreatment. SCR and hybrid vehicles would require a careful aftertreatment thermal management or heating to further exploit their potential for reducing emissions in urban areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Environm...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Environm...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ponce Jara, Marcos A.;
    Ponce Jara, Marcos A.
    ORCID
    Harvested from ORCID Public Data File

    Ponce Jara, Marcos A. in OpenAIRE
    Castro, M m; orcid Peláez Samaniego, Manuel Raúl;
    Peláez Samaniego, Manuel Raúl
    ORCID
    Harvested from ORCID Public Data File

    Peláez Samaniego, Manuel Raúl in OpenAIRE
    orcid Espinoza Abad, Juan Leonardo;
    Espinoza Abad, Juan Leonardo
    ORCID
    Harvested from ORCID Public Data File

    Espinoza Abad, Juan Leonardo in OpenAIRE
    +1 Authors

    Abstract The Ecuadorian electricity sector has undergone several changes during the past decade. The objective of this paper is twofold: a) to show how the Ecuadorian electricity sector has evolved from 2007 to 2017, and b) to discuss the relationship between energy policies and their impacts on electricity supply, management, tariffs, and the country's economy. Although oil remains as the main energy source and the leading driver for economic revenue, several hydropower projects have been built or are under construction intending in part to reduce the country's dependence on oil. The installed hydropower capacity in the country in 2017 is approximately 81% higher than in 2007 and it is expected that, by 2018, approximately 93% of the electricity will be produced from hydropower. Currently, biomass and biogas contribute with 1.8% of the total electricity generation, but only 0.6% of the electricity is produced in wind and solar farms. Adoption of smart grid technologies is key to transform the Ecuadorian electricity network and to positively impact the quality of the electricity supply. The future of the Ecuadorian electricity sector relies on the successful implementation of the new Organic Law of Public Service of Electricity and on external financing for new energy projects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ponce Jara, Marcos A.;
    Ponce Jara, Marcos A.
    ORCID
    Harvested from ORCID Public Data File

    Ponce Jara, Marcos A. in OpenAIRE
    Castro, M m; orcid Peláez Samaniego, Manuel Raúl;
    Peláez Samaniego, Manuel Raúl
    ORCID
    Harvested from ORCID Public Data File

    Peláez Samaniego, Manuel Raúl in OpenAIRE
    orcid Espinoza Abad, Juan Leonardo;
    Espinoza Abad, Juan Leonardo
    ORCID
    Harvested from ORCID Public Data File

    Espinoza Abad, Juan Leonardo in OpenAIRE
    +1 Authors

    Abstract The Ecuadorian electricity sector has undergone several changes during the past decade. The objective of this paper is twofold: a) to show how the Ecuadorian electricity sector has evolved from 2007 to 2017, and b) to discuss the relationship between energy policies and their impacts on electricity supply, management, tariffs, and the country's economy. Although oil remains as the main energy source and the leading driver for economic revenue, several hydropower projects have been built or are under construction intending in part to reduce the country's dependence on oil. The installed hydropower capacity in the country in 2017 is approximately 81% higher than in 2007 and it is expected that, by 2018, approximately 93% of the electricity will be produced from hydropower. Currently, biomass and biogas contribute with 1.8% of the total electricity generation, but only 0.6% of the electricity is produced in wind and solar farms. Adoption of smart grid technologies is key to transform the Ecuadorian electricity network and to positively impact the quality of the electricity supply. The future of the Ecuadorian electricity sector relies on the successful implementation of the new Organic Law of Public Service of Electricity and on external financing for new energy projects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph