- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 15. Life on land
- 6. Clean water
- EC
- Energy Research
- 7. Clean energy
- 13. Climate action
- 15. Life on land
- 6. Clean water
- EC
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Trans Tech Publications, Ltd. Authors: Lyubov Pyha; Juraj Durove; Yevhen Ogorodnyk; Hennadii Haiko;The concept and a new method for the shielded development of bottom gas hydrates have been proposed, the technological phases and constructive elements of their implementation have been substantiated. The research provides for the realization of the idea suggesting the simultaneous dissociation of the vast areas of a gas hydrate deposit, management of the targeted process of the penetration of methane recovered from gas hydrates into water space and its accumulation under the extensive gas-collecting shield wherefrom it is removed by bottom pipe transportation facilities. To do hydraulic fracturing, a well is drilled into the plane of the junction of the surface of a gas hydrate deposit and the rocks of a roof, the open system of fissures in the rocks of a roof is made through which produced gas is released to a gas-collecting blanket in a water.
Solid State Phenomen... arrow_drop_down Solid State PhenomenaArticle . 2018 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/ssp.277.27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solid State Phenomen... arrow_drop_down Solid State PhenomenaArticle . 2018 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/ssp.277.27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Marcos A. Ponce-Jara; Carlos Velásquez-Figueroa; María Reyes-Mero; Catalina Rus-Casas;doi: 10.3390/su14031696
Solar photovoltaic (PV) energy systems are one of the most widely deployed renewable technologies in the world. The efficiency of solar panels has been studied during the last few decades, and, to date, it has not been possible to displace the production of energy using crystalline silicon wafer-based technology whose efficiency has reached values around 26.1%. Moreover, using solar tracking PV systems has become a feasible alternative to increase the electric output of PV silicon technologies instead of using the conventional fixed PV installation on a flat or sloping surface. The following study has compared fixed and dual-axis sun-tracking PV panels in order to quantify the enhancement associated with the amount of energy harvested when using dual-axis tracking PV systems in the city of Manta, located in a coastal region of Ecuador. In order to carry out this study, an IoT monitoring system based on Raspberry Pi3 and Arduino platforms was used. Measurements of solar radiation (W/m2), light intensity (Lux), temperature (°C), short-circuit current (A), and open-circuit voltage (V) were taken every minute for both systems. The results prove that the dual-axis tracking PV system produces, on average, 19.62% more energy than the static PV system. These results present an 8.62% energy increase with respect to a previous study carried out in an equatorial region with similar characteristics to those of the city of Manta, where a one-axis tracking PV system was used.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 ColombiaPublisher:Elsevier BV Authors: Zambrano-Monserrate, Manuel A.; Ruano, María Alejandra; Sanchez-Alcalde, Luis;This research aims to show the positive and negative indirect effects of COVID-19 on the environment, particularly in the most affected countries such as China, USA, Italy, and Spain. Our research shows that there is a significant association between contingency measures and improvement in air quality, clean beaches and environmental noise reduction. On the other hand, there are also negative secondary aspects such as the reduction in recycling and the increase in waste, further endangering the contamination of physical spaces (water and land), in addition to air. Global economic activity is expected to return in the coming months in most countries (even if slowly), so decreasing GHG concentrations during a short period is not a sustainable way to clean up our environment.
Expeditio - Reposito... arrow_drop_down The Science of The Total EnvironmentArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseThe Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 966 citations 966 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Expeditio - Reposito... arrow_drop_down The Science of The Total EnvironmentArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseThe Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Determining the eco-hydrogeologic response of tropical glacierized watersheds to climate change: An integrated data-model approachAuthors: Maximillian Van Wyk de Vries; David Carchipulla-Morales; Andrew D. Wickert; Verónica Minaya;AbstractTropical glacier melt provides valuable water to surrounding communities, but climate change is projected to cause the demise of many of these glaciers within the coming century. Understanding the future of tropical glaciers requires a detailed record of their thicknesses and volumes, which is currently lacking in the Northern Andes. We calculate present-day (2015–2021) ice-thicknesses for all glaciers in Colombia and Ecuador using six different methods, and combine these into multi-model ensemble mean ice thickness and volume maps. We compare our results against available field-based measurements, and show that current ice volumes in Ecuador and Colombia are 2.49 ± 0.25 km3and 1.68 ± 0.24 km3respectively. We detected no motion on any remaining ice in Venezuela. The overall ice volume in the region, 4.17 ± 0.35 km3, is half of the previous best estimate of 8.11 km3. These data can be used to better evaluate the status and distribution of water resources, as input for models of future glacier change, and to assess regional geohazards associated with ice-clad volcanoes.
Scientific Data arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-022-01446-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-022-01446-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Claus Uwe Matzer; Zamir Mera; Zamir Mera; Stefan Hausberger; Natalia Fonseca;Abstract In this study, the influence of real-world conditions on the performance of a selective catalytic reduction (SCR) system in a Euro-6 diesel passenger car was analysed. NOx emissions and exhaust gas temperatures were recorded before and after the SCR system during real-world driving tests. The results showed that engine-out NOx emissions were positively correlated with vehicle specific power (VSP). The average NOx reductions (deNOx) of the SCR were 82.8%, 91.7%, and 85.5% for SCR-inlet gas temperatures below, within, and above the thermal window of 220–340 °C, respectively. The 92% of the tailpipe NOx peaks appeared under high power (VSP ≥ 10 W kg−1) and an insufficient deNOx level. Urban driving and long downhill sections in rural conditions caused cooling down of the SCR-inlet gas to below 200 °C, where the deNOx efficiency decreased and became dependent on the exhaust mass flow rate. To estimate the NOx benefit and CO₂ penalty via electrical heating of the SCR-inlet exhaust gas, the vehicle, the real driving dynamics, and the heating were simulated in Passenger car and heavy-duty emission model (PHEM). The minimum threshold of 200 °C resulted in the best NOx/CO₂ trade-off, reducing on average 4.7 mg of NOx per gram of CO₂.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Italy, Italy, United Kingdom, United Kingdom, China (People's Republic of), United States, United Kingdom, United Kingdom, Australia, China (People's Republic of), United States, Chile, Italy, United Kingdom, United StatesPublisher:American Association for the Advancement of Science (AAAS) M. Hoffmann; C. Hilton Taylor; A. Angulo; M. Bohm; T. M. Brooks; S. H. M. Butchart; K. E. Carpenter; J. Chanson; B. Collen; N. A. Cox; W. R. T. Darwall; N. K. Dulvy; L. R. Harrison; V. Katariya; C. M. Pollock; S. Quader; N. I. Richman; A. S. L. Rodrigues; M. F. Tognelli; J. C. Vie; J. M. Aguiar; D. J. Allen; G. R. Allen; G. Amori; N. B. Ananjeva; F. Andreone; P. Andrew; A. L. A. Ortiz; J. E. M. Baillie; R. Baldi; B. D. Bell; S. D. Biju; J. P. Bird; P. Black Decima; J. J. Blanc; F. Bolanos; W. Bolivar G; I. J. Burfield; J. A. Burton; D. R. Capper; F. Castro; G. Catullo; R. D. Cavanagh; A. Channing; N. L. Chao; A. M. Chenery; CHIOZZA, Federica; V. Clausnitzer; N. J. Collar; L. C. Collett; B. B. Collette; C. F. C. Fernandez; M. T. Craig; M. J. Crosby; N. Cumberlidge; A. Cuttelod; A. E. Derocher; A. C. Diesmos; J. S. Donaldson; J. W. Duckworth; G. Dutson; S. K. Dutta; R. H. Emslie; A. Farjon; S. Fowler; J. Freyhof; D. L. Garshelis; J. Gerlach; D. J. Gower; T. D. Grant; G. A. Hammerson; R. B. Harris; L. R. Heaney; S. B. Hedges; J. M. Hero; B. Hughes; S. A. Hussain; J. Icochea M; R. F. Inger; N. Ishii; D. T. Iskandar; R. K. B. Jenkins; Y. Kaneko; M. Kottelat; K. M. Kovacs; S. L. Kuzmin; E. La Marca; J. F. Lamoreux; M. W. N. Lau; E. O. Lavilla; K. Leus; R. L. Lewison; G. Lichtenstein; S. R. Livingstone; V. Lukoschek; D. P. Mallon; P. J. K. Mcgowan; A. Mcivor; P. D. Moehlman; S. Molur; A. M. Alonso; J. A. Musick; K. Nowell; R. A. Nussbaum; W. Olech; N. L. Orlov; T. J. Papenfuss; G. Parra Olea; W. F. Perrin; B. A. Polidoro; M. Pourkazemi; P. A. Racey; J. S. Ragle; M. Ram; G. Rathbun; R. P. Reynolds; A. G. J. Rhodin; S. J. Richards; L. O. Rodriguez; S. R. Ron; RONDININI, CARLO; A. B. Rylands; Y. Sadovy De Mitcheson; J. C. Sanciangco; K. L. Sanders; G. Santos Barrera; J. Schipper; C. Self Sullivan; Y. C. Shi; A. Shoemaker; F. T. Short; C. Sillero Zubiri; D. L. Silvano; K. G. Smith; A. T. Smith; J. Snoeks; A. J. Stattersfield; A. J. Symes; A. B. Taber; B. K. Talukdar; H. J. Temple; R. Timmins; J. A. Tobias; K. Tsytsulina; D. Tweddle; C. Ubeda; S. V. Valenti; P. Paul Van Dijk; L. M. Veiga; A. Veloso; D. C. Wege; M. Wilkinson; E. A. Williamson; F. Xie; B. E. Young; H. R. Akcakaya; L. Bennun; T. M. Blackburn; BOITANI, Luigi; H. T. Dublin; G. A. B. Da Fonseca; C. Gascon; T. E. Lacher; G. M. Mace; S. A. Mainka; J. A. Mcneely; R. A. Mittermeier; G. M. Reid; J. P. Rodriguez; A. A. Rosenberg; M. J. Samways; J. Smart; B. A. Stein; S. N. Stuart;pmid: 20978281
handle: 20.500.14243/25790 , 11573/358959 , 10722/140896 , 1893/3141 , 2440/69528 , 10072/37640
pmid: 20978281
handle: 20.500.14243/25790 , 11573/358959 , 10722/140896 , 1893/3141 , 2440/69528 , 10072/37640
Assessing Biodiversity Declines Understanding human impact on biodiversity depends on sound quantitative projection. Pereira et al. (p. 1496 , published online 26 October) review quantitative scenarios that have been developed for four main areas of concern: species extinctions, species abundances and community structure, habitat loss and degradation, and shifts in the distribution of species and biomes. Declines in biodiversity are projected for the whole of the 21st century in all scenarios, but with a wide range of variation. Hoffmann et al. (p. 1503 , published online 26 October) draw on the results of five decades' worth of data collection, managed by the International Union for Conservation of Nature Species Survival Commission. A comprehensive synthesis of the conservation status of the world's vertebrates, based on an analysis of 25,780 species (approximately half of total vertebrate diversity), is presented: Approximately 20% of all vertebrate species are at risk of extinction in the wild, and 11% of threatened birds and 17% of threatened mammals have moved closer to extinction over time. Despite these trends, overall declines would have been significantly worse in the absence of conservation actions.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2010License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Old Dominion University: ODU Digital CommonsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1194442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2010License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Old Dominion University: ODU Digital CommonsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1194442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Geovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; +1 AuthorsGeovanna Villacreses; Diego Jijón; Juan Francisco Nicolalde; Javier Martínez-Gómez; Franz Betancourt;doi: 10.3390/en16010029
handle: 10017/61912
The Galapagos Islands have been declared a World Heritage site due to their unique biodiversity, which makes them a living museum and a natural laboratory for humankind. However, to fulfill the energy needs of its habitants and foreign visitors, the islands have depended on fossil fuel energies that have produced levels of lead and chemical agents that are affecting the islands’ air quality, flora, and fauna. Therefore, zero-carbon initiatives have been created to protect the islands, wherein solar and wind power plants have been studied as reliable alternatives. In this way, Geographical Information Systems based on Multicriteria Decision Methods constitute a methodology that minimizes the destruction and disturbance of nature in order to assess the best location for the implementation of these alternative energy sources. Therefore, by exploring the geographical information along with the Analytical Hierarchical Processes and the Ordered Weighted Average methods, it was possible to identify the potential for solar power plants of 10 MW on each island; likewise, for wind power plants, it was found that the islands possess implementation potential that has been analyzed in the field, showing that the best location is on Baltra Island, but is not limited to it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 106visibility views 106 download downloads 17 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/29/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Trans Tech Publications, Ltd. Authors: Lyubov Pyha; Juraj Durove; Yevhen Ogorodnyk; Hennadii Haiko;The concept and a new method for the shielded development of bottom gas hydrates have been proposed, the technological phases and constructive elements of their implementation have been substantiated. The research provides for the realization of the idea suggesting the simultaneous dissociation of the vast areas of a gas hydrate deposit, management of the targeted process of the penetration of methane recovered from gas hydrates into water space and its accumulation under the extensive gas-collecting shield wherefrom it is removed by bottom pipe transportation facilities. To do hydraulic fracturing, a well is drilled into the plane of the junction of the surface of a gas hydrate deposit and the rocks of a roof, the open system of fissures in the rocks of a roof is made through which produced gas is released to a gas-collecting blanket in a water.
Solid State Phenomen... arrow_drop_down Solid State PhenomenaArticle . 2018 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/ssp.277.27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solid State Phenomen... arrow_drop_down Solid State PhenomenaArticle . 2018 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/ssp.277.27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Saudi Arabia, Saudi ArabiaPublisher:Elsevier BV Langodan, Sabique; Cavaleri, Luigi; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim;handle: 20.500.14243/390897 , 10754/662152
We examine the possibility of making useful climate extrapolations in inner basins. Stressing the role of the local geographic features, for a practical example we focus our attention on the Red Sea. We observe that in spite of being an enclosed and relatively small Sea, its climate conditions are heavily affected by those of the larger neighboring regions, in particular the Mediterranean and the Arabian Seas. Using existing high-resolution information of the recent decades, we use both reasoned extrapolation and knowledge of, past and future, longer term general climatic information to frame what is presently possible to assess for the Red Sea. Specifically, the northern part, influenced by the Mediterranean Sea, shows a clear decreasing trend of both the meteorological and wave conditions in the recent decades. However, within a longer span record of 100 years, this decrease appears to be part of a 70-year cycle, which may be overturning, partly at least, in the coming decades. These trends are consistent with the expectations inferred from regional climatic indices, such as North Atlantic Oscillation and Atlantic Multidecadal Oscillation. No similar long term trend has been found for wave, hence implicitly the wind, conditions in the southern part of the basin. As expected, some correlation exists with the typical patterns of the Indian Ocean, but without any specific indication of a future trend. We suggest that, suitably adapted for the specific local conditions and dominant patterns, similar correlation and physical patterns may exist in several of the enclosed areas of the world, opening the possibility of exploring their possible trends in the future decades.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global and Planetary ChangeArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloplacha.2020.103151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Marcos A. Ponce-Jara; Carlos Velásquez-Figueroa; María Reyes-Mero; Catalina Rus-Casas;doi: 10.3390/su14031696
Solar photovoltaic (PV) energy systems are one of the most widely deployed renewable technologies in the world. The efficiency of solar panels has been studied during the last few decades, and, to date, it has not been possible to displace the production of energy using crystalline silicon wafer-based technology whose efficiency has reached values around 26.1%. Moreover, using solar tracking PV systems has become a feasible alternative to increase the electric output of PV silicon technologies instead of using the conventional fixed PV installation on a flat or sloping surface. The following study has compared fixed and dual-axis sun-tracking PV panels in order to quantify the enhancement associated with the amount of energy harvested when using dual-axis tracking PV systems in the city of Manta, located in a coastal region of Ecuador. In order to carry out this study, an IoT monitoring system based on Raspberry Pi3 and Arduino platforms was used. Measurements of solar radiation (W/m2), light intensity (Lux), temperature (°C), short-circuit current (A), and open-circuit voltage (V) were taken every minute for both systems. The results prove that the dual-axis tracking PV system produces, on average, 19.62% more energy than the static PV system. These results present an 8.62% energy increase with respect to a previous study carried out in an equatorial region with similar characteristics to those of the city of Manta, where a one-axis tracking PV system was used.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 ColombiaPublisher:Elsevier BV Authors: Zambrano-Monserrate, Manuel A.; Ruano, María Alejandra; Sanchez-Alcalde, Luis;This research aims to show the positive and negative indirect effects of COVID-19 on the environment, particularly in the most affected countries such as China, USA, Italy, and Spain. Our research shows that there is a significant association between contingency measures and improvement in air quality, clean beaches and environmental noise reduction. On the other hand, there are also negative secondary aspects such as the reduction in recycling and the increase in waste, further endangering the contamination of physical spaces (water and land), in addition to air. Global economic activity is expected to return in the coming months in most countries (even if slowly), so decreasing GHG concentrations during a short period is not a sustainable way to clean up our environment.
Expeditio - Reposito... arrow_drop_down The Science of The Total EnvironmentArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseThe Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 966 citations 966 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Expeditio - Reposito... arrow_drop_down The Science of The Total EnvironmentArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseThe Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Determining the eco-hydrogeologic response of tropical glacierized watersheds to climate change: An integrated data-model approachAuthors: Maximillian Van Wyk de Vries; David Carchipulla-Morales; Andrew D. Wickert; Verónica Minaya;AbstractTropical glacier melt provides valuable water to surrounding communities, but climate change is projected to cause the demise of many of these glaciers within the coming century. Understanding the future of tropical glaciers requires a detailed record of their thicknesses and volumes, which is currently lacking in the Northern Andes. We calculate present-day (2015–2021) ice-thicknesses for all glaciers in Colombia and Ecuador using six different methods, and combine these into multi-model ensemble mean ice thickness and volume maps. We compare our results against available field-based measurements, and show that current ice volumes in Ecuador and Colombia are 2.49 ± 0.25 km3and 1.68 ± 0.24 km3respectively. We detected no motion on any remaining ice in Venezuela. The overall ice volume in the region, 4.17 ± 0.35 km3, is half of the previous best estimate of 8.11 km3. These data can be used to better evaluate the status and distribution of water resources, as input for models of future glacier change, and to assess regional geohazards associated with ice-clad volcanoes.
Scientific Data arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-022-01446-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-022-01446-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Claus Uwe Matzer; Zamir Mera; Zamir Mera; Stefan Hausberger; Natalia Fonseca;Abstract In this study, the influence of real-world conditions on the performance of a selective catalytic reduction (SCR) system in a Euro-6 diesel passenger car was analysed. NOx emissions and exhaust gas temperatures were recorded before and after the SCR system during real-world driving tests. The results showed that engine-out NOx emissions were positively correlated with vehicle specific power (VSP). The average NOx reductions (deNOx) of the SCR were 82.8%, 91.7%, and 85.5% for SCR-inlet gas temperatures below, within, and above the thermal window of 220–340 °C, respectively. The 92% of the tailpipe NOx peaks appeared under high power (VSP ≥ 10 W kg−1) and an insufficient deNOx level. Urban driving and long downhill sections in rural conditions caused cooling down of the SCR-inlet gas to below 200 °C, where the deNOx efficiency decreased and became dependent on the exhaust mass flow rate. To estimate the NOx benefit and CO₂ penalty via electrical heating of the SCR-inlet exhaust gas, the vehicle, the real driving dynamics, and the heating were simulated in Passenger car and heavy-duty emission model (PHEM). The minimum threshold of 200 °C resulted in the best NOx/CO₂ trade-off, reducing on average 4.7 mg of NOx per gram of CO₂.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Italy, Italy, United Kingdom, United Kingdom, China (People's Republic of), United States, United Kingdom, United Kingdom, Australia, China (People's Republic of), United States, Chile, Italy, United Kingdom, United StatesPublisher:American Association for the Advancement of Science (AAAS) M. Hoffmann; C. Hilton Taylor; A. Angulo; M. Bohm; T. M. Brooks; S. H. M. Butchart; K. E. Carpenter; J. Chanson; B. Collen; N. A. Cox; W. R. T. Darwall; N. K. Dulvy; L. R. Harrison; V. Katariya; C. M. Pollock; S. Quader; N. I. Richman; A. S. L. Rodrigues; M. F. Tognelli; J. C. Vie; J. M. Aguiar; D. J. Allen; G. R. Allen; G. Amori; N. B. Ananjeva; F. Andreone; P. Andrew; A. L. A. Ortiz; J. E. M. Baillie; R. Baldi; B. D. Bell; S. D. Biju; J. P. Bird; P. Black Decima; J. J. Blanc; F. Bolanos; W. Bolivar G; I. J. Burfield; J. A. Burton; D. R. Capper; F. Castro; G. Catullo; R. D. Cavanagh; A. Channing; N. L. Chao; A. M. Chenery; CHIOZZA, Federica; V. Clausnitzer; N. J. Collar; L. C. Collett; B. B. Collette; C. F. C. Fernandez; M. T. Craig; M. J. Crosby; N. Cumberlidge; A. Cuttelod; A. E. Derocher; A. C. Diesmos; J. S. Donaldson; J. W. Duckworth; G. Dutson; S. K. Dutta; R. H. Emslie; A. Farjon; S. Fowler; J. Freyhof; D. L. Garshelis; J. Gerlach; D. J. Gower; T. D. Grant; G. A. Hammerson; R. B. Harris; L. R. Heaney; S. B. Hedges; J. M. Hero; B. Hughes; S. A. Hussain; J. Icochea M; R. F. Inger; N. Ishii; D. T. Iskandar; R. K. B. Jenkins; Y. Kaneko; M. Kottelat; K. M. Kovacs; S. L. Kuzmin; E. La Marca; J. F. Lamoreux; M. W. N. Lau; E. O. Lavilla; K. Leus; R. L. Lewison; G. Lichtenstein; S. R. Livingstone; V. Lukoschek; D. P. Mallon; P. J. K. Mcgowan; A. Mcivor; P. D. Moehlman; S. Molur; A. M. Alonso; J. A. Musick; K. Nowell; R. A. Nussbaum; W. Olech; N. L. Orlov; T. J. Papenfuss; G. Parra Olea; W. F. Perrin; B. A. Polidoro; M. Pourkazemi; P. A. Racey; J. S. Ragle; M. Ram; G. Rathbun; R. P. Reynolds; A. G. J. Rhodin; S. J. Richards; L. O. Rodriguez; S. R. Ron; RONDININI, CARLO; A. B. Rylands; Y. Sadovy De Mitcheson; J. C. Sanciangco; K. L. Sanders; G. Santos Barrera; J. Schipper; C. Self Sullivan; Y. C. Shi; A. Shoemaker; F. T. Short; C. Sillero Zubiri; D. L. Silvano; K. G. Smith; A. T. Smith; J. Snoeks; A. J. Stattersfield; A. J. Symes; A. B. Taber; B. K. Talukdar; H. J. Temple; R. Timmins; J. A. Tobias; K. Tsytsulina; D. Tweddle; C. Ubeda; S. V. Valenti; P. Paul Van Dijk; L. M. Veiga; A. Veloso; D. C. Wege; M. Wilkinson; E. A. Williamson; F. Xie; B. E. Young; H. R. Akcakaya; L. Bennun; T. M. Blackburn; BOITANI, Luigi; H. T. Dublin; G. A. B. Da Fonseca; C. Gascon; T. E. Lacher; G. M. Mace; S. A. Mainka; J. A. Mcneely; R. A. Mittermeier; G. M. Reid; J. P. Rodriguez; A. A. Rosenberg; M. J. Samways; J. Smart; B. A. Stein; S. N. Stuart;pmid: 20978281
handle: 20.500.14243/25790 , 11573/358959 , 10722/140896 , 1893/3141 , 2440/69528 , 10072/37640
pmid: 20978281
handle: 20.500.14243/25790 , 11573/358959 , 10722/140896 , 1893/3141 , 2440/69528 , 10072/37640
Assessing Biodiversity Declines Understanding human impact on biodiversity depends on sound quantitative projection. Pereira et al. (p. 1496 , published online 26 October) review quantitative scenarios that have been developed for four main areas of concern: species extinctions, species abundances and community structure, habitat loss and degradation, and shifts in the distribution of species and biomes. Declines in biodiversity are projected for the whole of the 21st century in all scenarios, but with a wide range of variation. Hoffmann et al. (p. 1503 , published online 26 October) draw on the results of five decades' worth of data collection, managed by the International Union for Conservation of Nature Species Survival Commission. A comprehensive synthesis of the conservation status of the world's vertebrates, based on an analysis of 25,780 species (approximately half of total vertebrate diversity), is presented: Approximately 20% of all vertebrate species are at risk of extinction in the wild, and 11% of threatened birds and 17% of threatened mammals have moved closer to extinction over time. Despite these trends, overall declines would have been significantly worse in the absence of conservation actions.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2010License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Old Dominion University: ODU Digital CommonsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1194442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2010License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Old Dominion University: ODU Digital CommonsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1194442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu