Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • EG

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Belal Salah; Adewale K. Ipadeola; Aboubakr M. Abdullah; Alaa Ghanem; +1 Authors

    Tailoring the shape of Pd nanocrystals is one of the main ways to enhance catalytic activity; however, the effect of shapes and electrolyte pH on carbon monoxide oxidation (COOxid) is not highlighted enough. This article presents the controlled fabrication of Pd nanocrystals in different morphologies, including Pd nanosponge via the ice-cooling reduction of the Pd precursor using NaBH4 solution and Pd nanocube via ascorbic acid reduction at 25 °C. Both Pd nanosponge and Pd nanocube are self-standing and have a high surface area, uniform distribution, and clean surface. The electrocatalytic CO oxidation activity and durability of the Pd nanocube were significantly superior to those of Pd nanosponge and commercial Pd/C in only acidic (H2SO4) medium and the best among the three media, due to the multiple adsorption active sites, uniform distribution, and high surface area of the nanocube structure. However, Pd nanosponge had enhanced COOxid activity and stability in both alkaline (KOH) and neutral (NaHCO3) electrolytes than Pd nanocube and Pd/C, attributable to its low Pd-Pd interatomic distance and cleaner surface. The self-standing Pd nanosponge and Pd nanocube were more active than Pd/C in all electrolytes. Mainly, the COOxid current density of Pd nanocube in H2SO4 (5.92 mA/cm2) was nearly 3.6 times that in KOH (1.63 mA/cm2) and 10.3 times that in NaHCO3 (0.578 mA/cm2), owing to the greater charge mobility and better electrolyte–electrode interaction, as evidenced by electrochemical impedance spectroscopy (EIS) analysis. Notably, this study confirmed that acidic electrolytes and Pd nanocube are highly preferred for promoting COOxid and may open new avenues for precluding CO poisoning in alcohol-based fuel cells.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Molecular Sciences
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Molecular Sciences
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yahia H. Ahmad; Kamel A. Eid; Siham Y. AlQaradawi; Nageh K. Allam;

    Perovskite oxide Pt–NiMnO3nanocrystals synthesized by a modified citrate-gel approach exhibited a superior catalytic activity and durability towards the oxygen evolution reaction over a wide range of pH values relative to available commercial Pt/C and NiMnO3nanocrystals.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Belal Salah; Adewale K. Ipadeola; Aboubakr M. Abdullah; Alaa Ghanem; +1 Authors

    Tailoring the shape of Pd nanocrystals is one of the main ways to enhance catalytic activity; however, the effect of shapes and electrolyte pH on carbon monoxide oxidation (COOxid) is not highlighted enough. This article presents the controlled fabrication of Pd nanocrystals in different morphologies, including Pd nanosponge via the ice-cooling reduction of the Pd precursor using NaBH4 solution and Pd nanocube via ascorbic acid reduction at 25 °C. Both Pd nanosponge and Pd nanocube are self-standing and have a high surface area, uniform distribution, and clean surface. The electrocatalytic CO oxidation activity and durability of the Pd nanocube were significantly superior to those of Pd nanosponge and commercial Pd/C in only acidic (H2SO4) medium and the best among the three media, due to the multiple adsorption active sites, uniform distribution, and high surface area of the nanocube structure. However, Pd nanosponge had enhanced COOxid activity and stability in both alkaline (KOH) and neutral (NaHCO3) electrolytes than Pd nanocube and Pd/C, attributable to its low Pd-Pd interatomic distance and cleaner surface. The self-standing Pd nanosponge and Pd nanocube were more active than Pd/C in all electrolytes. Mainly, the COOxid current density of Pd nanocube in H2SO4 (5.92 mA/cm2) was nearly 3.6 times that in KOH (1.63 mA/cm2) and 10.3 times that in NaHCO3 (0.578 mA/cm2), owing to the greater charge mobility and better electrolyte–electrode interaction, as evidenced by electrochemical impedance spectroscopy (EIS) analysis. Notably, this study confirmed that acidic electrolytes and Pd nanocube are highly preferred for promoting COOxid and may open new avenues for precluding CO poisoning in alcohol-based fuel cells.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Molecular Sciences
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Molecular Sciences
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yahia H. Ahmad; Kamel A. Eid; Siham Y. AlQaradawi; Nageh K. Allam;

    Perovskite oxide Pt–NiMnO3nanocrystals synthesized by a modified citrate-gel approach exhibited a superior catalytic activity and durability towards the oxygen evolution reaction over a wide range of pH values relative to available commercial Pt/C and NiMnO3nanocrystals.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph