- home
- Advanced Search
- Energy Research
- Wellcome Trust
- 6. Clean water
- EG
- Energy Research
- Wellcome Trust
- 6. Clean water
- EG
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:WTWTOsama S. Ali; Walaa G. Hozayen; Abdulwahab S. Almutairi; Sherif A. Edris; Aala A. Abulfaraj; Amged A. Ouf; Hamada M. Mahmoud;doi: 10.3390/su132011131
Wastewater treatment plants (WWTPs) are recognized as hotspots for the dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in the environment. Our study utilized a high-throughput sequencing-based metagenomic analysis approach to compare the ARG abundance profiles of the raw sewage, treated effluent and activated sludge samples from a full-scale WWTP in Egypt. In addition, the difference in microbial community composition due to the treatment process was assessed. As a result, 578 ARG subtypes (resistance genes) belonging to 18 ARG types (antibiotic resistance classes) were identified. ARGs encoding for resistance against multidrug, aminoglycoside, bacitracin, beta-lactam, sulfonamide, and tetracycline antibiotics were the most abundant types. The total removal efficiency percentage of ARGs in the WWTP was found to be 98% however, the ARG persistence results indicated that around 68% of the ARGs in the influent could be found in the treated effluent. This finding suggests that the treated wastewater poses a potential risk for the ARG dissemination in bacterial communities of the receiving water bodies via horizontal gene transfer (HGT). The community composition at phylum level showed that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant phyla in all datasets. Although the relative abundance of several pathogenic bacteria in the influent declined to less than 1% in the effluent, the taxonomic assignments at species level for the effluent and sludge metagenomes demonstrated that clinically important pathogens such as Escherichia coli, Klebsiella pneumonia, and Aeromonas caviae were present. Overall, the results of this study would hopefully enhance our knowledge about the abundance profiles of ARGs and their fate in different wastewater treatment compartments that have never been examined before.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:WTWTOsama S. Ali; Walaa G. Hozayen; Abdulwahab S. Almutairi; Sherif A. Edris; Aala A. Abulfaraj; Amged A. Ouf; Hamada M. Mahmoud;doi: 10.3390/su132011131
Wastewater treatment plants (WWTPs) are recognized as hotspots for the dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in the environment. Our study utilized a high-throughput sequencing-based metagenomic analysis approach to compare the ARG abundance profiles of the raw sewage, treated effluent and activated sludge samples from a full-scale WWTP in Egypt. In addition, the difference in microbial community composition due to the treatment process was assessed. As a result, 578 ARG subtypes (resistance genes) belonging to 18 ARG types (antibiotic resistance classes) were identified. ARGs encoding for resistance against multidrug, aminoglycoside, bacitracin, beta-lactam, sulfonamide, and tetracycline antibiotics were the most abundant types. The total removal efficiency percentage of ARGs in the WWTP was found to be 98% however, the ARG persistence results indicated that around 68% of the ARGs in the influent could be found in the treated effluent. This finding suggests that the treated wastewater poses a potential risk for the ARG dissemination in bacterial communities of the receiving water bodies via horizontal gene transfer (HGT). The community composition at phylum level showed that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant phyla in all datasets. Although the relative abundance of several pathogenic bacteria in the influent declined to less than 1% in the effluent, the taxonomic assignments at species level for the effluent and sludge metagenomes demonstrated that clinically important pathogens such as Escherichia coli, Klebsiella pneumonia, and Aeromonas caviae were present. Overall, the results of this study would hopefully enhance our knowledge about the abundance profiles of ARGs and their fate in different wastewater treatment compartments that have never been examined before.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu