Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
857 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2. Zero hunger
  • 15. Life on land
  • EG

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fouad M.F. Elshaghabee; Fouad M.F. Elshaghabee; Wilhelm eBockelmann; Diana eMeske; +4 Authors

    Pour obtenir un aperçu spécifique des rôles que les micro-organismes pourraient jouer dans la stéatose hépatique non alcoolique (NAFLD), certaines bactéries intestinales et lactiques et une levure (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) ont été caractérisées par une chromatographie liquide haute performance pour la production d'éthanol lorsqu'elles sont cultivées sur différents glucides : hexoses (glucose et fructose), pentoses (arabinose et ribose), disaccharides (lactose et lactulose) et inuline. Les quantités les plus élevées d'éthanol ont été produites par S. cerevisiae, L. fermentum et W. confusa sur le glucose et par S. cerevisiae et W. confusa sur le fructose. En raison de la mannitol-déshydrogénase exprimée dans L. fermentum, la production d'éthanol sur le fructose a été significativement réduite (P < 0,05). Le pyruvate et le citrate, deux accepteurs d'électrons potentiels pour la régénération du NAD+/NADP+, ont considérablement réduit la production d'éthanol avec de l'acétate produit à la place dans L. fermentum cultivé sur glucose et W. confusa cultivé sur glucose et fructose, respectivement. Dans les boues fécales préparées à partir des matières fécales de quatre volontaires en surpoids, on a constaté que l'éthanol était produit lors de l'ajout de fructose. L'ajout d'A. caccae, L. acidophilus, L. fermentum, ainsi que de citrate et de pyruvate, respectivement, a aboli la production d'éthanol. Cependant, l'ajout de W. confusa a entraîné une augmentation significative (P < 0,05) de la production d'éthanol. Ces résultats indiquent que des micro-organismes comme W. confusa, une bactérie lactique hétéro-fermentaire, négative à la mannitol-déshydrogénase, peuvent favoriser la NAFLD par l'éthanol produit à partir de la fermentation du sucre, tandis que d'autres bactéries intestinales et des bactéries lactiques homo- et hétéro-fermentaires mais positives à la mannitol-déshydrogénase peuvent ne pas favoriser la NAFLD. En outre, nos études indiquent que les facteurs alimentaires interférant avec le microbiote gastro-intestinal et le métabolisme microbien peuvent être importants dans la prévention ou la promotion de la NAFLD. Para obtener información específica sobre los roles que podrían desempeñar los microorganismos en la enfermedad del hígado graso no alcohólico (NAFLD, por sus siglas en inglés), algunas bacterias intestinales y del ácido láctico y una levadura (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) se caracterizaron por cromatografía líquida de alto rendimiento para la producción de etanol cuando se cultivaron en diferentes carbohidratos: hexosas (glucosa y fructosa), pentosas (arabinosa y ribosa), disacáridos (lactosa y lactulosa) e inulina. Las cantidades más altas de etanol fueron producidas por S. cerevisiae, L. fermentum y W. confusa en glucosa y por S. cerevisiae y W. confusa en fructosa. Debido a la manitol-deshidrogenasa expresada en L. fermentum, la producción de etanol en fructosa se redujo significativamente (P < 0.05). El piruvato y el citrato, dos aceptores de electrones potenciales para la regeneración de NAD+/NADP+, redujeron drásticamente la producción de etanol con acetato producido en su lugar en L. fermentum cultivado en glucosa y W. confusa cultivado en glucosa y fructosa, respectivamente. En suspensiones fecales preparadas a partir de heces de cuatro voluntarios con sobrepeso, se encontró que el etanol se producía tras la adición de fructosa. La adición de A. caccae, L. acidophilus, L. fermentum, así como citrato y piruvato, respectivamente, abolió la producción de etanol. Sin embargo, la adición de W. confusa resultó en un aumento significativo (P < 0.05) de la producción de etanol. Estos resultados indican que microorganismos como W. confusa, una bacteria de ácido láctico hetero-fermentativa, negativa para manitol-deshidrogenasa, pueden promover NAFLD a través del etanol producido a partir de la fermentación de azúcar, mientras que otras bacterias intestinales y bacterias de ácido láctico homo- y hetero-fermentativas pero positivas para manitol-deshidrogenasa pueden no promover NAFLD. Además, nuestros estudios indican que los factores dietéticos que interfieren con la microbiota gastrointestinal y el metabolismo microbiano pueden ser importantes para prevenir o promover la EHGNA. To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. لاكتساب بعض الأفكار المحددة حول الأدوار التي قد تلعبها الكائنات الحية الدقيقة في مرض الكبد الدهني غير الكحولي (NAFLD)، تميزت بعض بكتيريا حمض الأمعاء واللاكتيك وخميرة واحدة (Anaerostipes caccae، Bacteroides thetaiotaomicron، Bifidobacterium longum، Enterococcus fecalis، Escherichia coli، Lactobacillus acidophilus، Lactobacillus fermentum، Lactobacillus plantarum، Weissella confusa، Saccharomyces cerevisiae) بتصوير سائل عالي الأداء لإنتاج الإيثانول عند زراعته على كربوهيدرات مختلفة: hexoses (الجلوكوز والفركتوز)، pentoses (الأرابينوز والريبوز)، disaccharides (اللاكتوز واللاكتولوز)، و inulin. تم إنتاج أعلى كميات من الإيثانول بواسطة S. cerevisiae و L. fermentum و W. confusa على الجلوكوز و S. cerevisiae و W. confusa على الفركتوز. بسبب نازعة هيدروجين المانيتول المعبر عنها في L. fermentum، انخفض إنتاج الإيثانول على الفركتوز بشكل كبير (P < 0.05). قلل البيروفات والسيترات، وهما مستقبلان محتملان للإلكترون لتجديد NAD +/NADP+، بشكل كبير من إنتاج الإيثانول مع الأسيتات المنتجة بدلاً من ذلك في L. fermentum المزروع على الجلوكوز و W. confusa المزروع على الجلوكوز والفركتوز، على التوالي. في الملاط البرازي الذي تم تحضيره من براز أربعة متطوعين يعانون من زيادة الوزن، وجد أن الإيثانول يتم إنتاجه عند إضافة الفركتوز. إضافة A. caccae، L. acidophilus، L. fermentum، وكذلك السترات والبيروفات، على التوالي، ألغت إنتاج الإيثانول. ومع ذلك، أدت إضافة W. confusa إلى زيادة كبيرة في إنتاج الإيثانول (P < 0.05). تشير هذه النتائج إلى أن الكائنات الحية الدقيقة مثل W. confusa، وهي بكتيريا حمض اللاكتيك السلبية غير المتجانسة، قد تعزز NAFLD من خلال الإيثانول المنتج من تخمير السكر، في حين أن البكتيريا المعوية الأخرى وبكتيريا حمض اللاكتيك الإيجابية غير المتجانسة ولكن غير المتجانسة قد لا تعزز NAFLD. أيضًا، تشير دراساتنا إلى أن العوامل الغذائية التي تتداخل مع الكائنات الحية الدقيقة في الجهاز الهضمي والتمثيل الغذائي الميكروبي قد تكون مهمة في منع أو تعزيز NAFLD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/fk...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/z0...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    101
    citations101
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/fk...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/z0...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gaber M. Abogadallah; Reham M. Nada; Enas G. Badran; Mamdouh M. Nemat Alla;

    Nine-day-old wheat seedlings were treated with NaCl at 75, 150, and 225 mM for 15 days in the absence or presence of 5 mM glycine. NaCl particularly at 150 and 225 mM led to significant reductions in fresh and dry weights, chlorophylls, carotenoids, Ca(2+), K(+), and K(+)/Na(+) ratio. Contrarily, there were significant accumulations in Na(+), malondialdehyde (MDA), H2O2, soluble sugars, and proline concomitant with inhibitions in enzymatic and non-enzymatic antioxidants and in Rubisco. In the meantime, the transcript level of alternative oxidase (AOX) was highly upregulated by NaCl; the upregulation was greatest with the lowest concentration. However, the transcript level of H(+)/Na(+) antiporter exchanger (NHX1) was decreased by 75 and 150 mM NaCl but increased by 225 mM. Similarly, the transcript level of salt overly sensitive 1 (SOS1) was upregulated by only 225 mM. Nonetheless, the application of glycine mostly overcame the varied impacts of NaCl on growth, MDA, H2O2, pigments, metabolites, and elements. Moreover, glycine elevated enzymatic and non-enzymatic antioxidants to reach most likely the levels of the respective control. On the contrary, much induction was detected in Rubisco. The transcript levels of AOX, NHX1, and SOS1 were further upregulated; the upregulation of AOX was most pronounced with the highest NaCl concentration in the presence of glycine and only with 75 and 150 mM NaCl for NHX1 and SOS1. The increase in antioxidants concomitant with the decrease in MDA and H2O2 reveals that ROS scavenging system became more efficient in NaCl-treated wheat following glycine application, concluding that glycine could ameliorate wheat tolerance to salinity. Moreover, lowering Na(+) by glycine and mitigation of the decreased K(+)/Na(+) ratio synchronous with recovery in growth reduction and stimulation of AOX, NHX1 and SOS1 may emphasize the role of glycine in stimulating gene expression for raising wheat tolerance to NaCl.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PROTOPLASMA
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    PROTOPLASMA
    Article . 2016
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PROTOPLASMA
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      PROTOPLASMA
      Article . 2016
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 Authors

    Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2020
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2020
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hani A. Alfheeaid; Hassan Barakat; Sami A. Althwab; Khalid Hamid Musa; +1 Authors

    With the increasing global nutritional bar market, developing and formulating innovative high-energy and protein bars to compensate for nutrients using date fruits is beneficial for health-conscious individuals. The current research was undertaken to study the composition and physicochemical characteristics of innovative high-energy and high-protein bars using two combinations of Sukkari dates or fruit mixtures as a base. Fifty percent of either Sukkari date paste or dried fruit mixture (25% raisin, 12.5% fig, and 12.5% apricot) combined with other different ingredients was used to produce a date-based bar (DBB) or fruit-based bar (FBB). Proximate composition, sugar content, amino and fatty acid profiles, minerals and vitamins, phytochemicals, antioxidant activity, and visual color parameters of the DBB and the FBB were determined and statistically compared. Proximate analysis revealed higher moisture and fat content in the FBB than the DBB, while ash and crude fiber were higher in the DBB than the FBB. The protein content in the DBB and the FBB was not statistically different. Both prepared bars exuded around 376–378 kcal 100 g−1 fresh weight. Sugar profile analysis of the DBB and the FBB showed dependable changes based on date or fruit content. Fructose, glucose, and maltose contents were higher in the FBB than in the DBB, while sucrose content was higher in the DBB than in the FBB. The DBB showed significantly higher content in Ca, Cu, Fe, Zn, Mn, and Se and significantly lower content in Mg, K, and Na than the FBB, with no variation in phosphorus content. The DBB and the FBB contained both essential (EAA) and non-essential (NEAA) amino acids. The DBB scored higher Lysine, Methionine, Histidine, Threonine, Phenylalanine, Isoleucine, and Cystine contents than the FBB, while the FBB scored only higher Leucine and Valine contents than the DBB. Seventeen saturated fatty acids were identified in the DBB and the FBB, with Palmitic acid (C16:0) as the predominant fatty acid. Oleic acid (C18:1n9c) was predominant among seven determined monounsaturated fatty acids. Linoleic fatty acid (C18:2n6c) was predominant among eight identified polyunsaturated fatty acids. In addition, α-Linolenic (C18:3n3) was detected in a considerable amount. However, in both the DBB and the FBB, the content and distribution of fatty acids were not remarkably changed. Regarding phytochemicals and bioactive compounds, the FBB was significantly higher in total phenolic content (TPC), total flavonoids (TF), and total flavonols (TFL) contents and scavenging activity against DPPH and ABTS free radicals than the DBB. The DBB and the FBB showed positive a* values, indicating a reddish color. The b* values were 27.81 and 28.54 for the DBB and the FBB, respectively. The DBB is affected by the lower L* value and higher browning index (BI) to make its color brownish. Sensory evaluation data showed that panelists significantly preferred the DBB over the FBB. In conclusion, processing and comparing these bars indicated that using Sukkari dates is a nutrient-dense, convenient, economical, and better sugar alternative that helps combat the calorie content. Thus, scaling up the use of dates instead of fruits in producing high-energy and protein bars commercially is highly recommended.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Foodsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Foodsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pankaj Kumar; Ebrahem M. Eid; Mostafa A. Taher; Mohamed H. E. El-Morsy; +11 Authors

    Agro-wastes, such as crop residues, leaf litter, and sawdust, are major contributors to global greenhouse gas emissions, and consequently a major concern for climate change. Nowadays, mushroom cultivation has appeared as an emerging agribusiness that helps in the sustainable management of agro-wastes. However, partial utilization of agro-wastes by mushrooms results in the generation of a significant quantity of spent mushroom substrates (SMS) that have continued to become an environmental problem. In particular, Shiitake (Lentinula edodes Berk.) mushrooms can be grown on different types of agro-wastes and also generate a considerable amount of SMS. Therefore, this study investigates the biotransformation of SMS obtained after Shiitake mushroom cultivation into biogas and attendant utilization of slurry digestate (SD) in tomato (Solanum lycopersicum L.) crop fertilization. Biogas production experiments were conducted anaerobically using four treatments of SMS, i.e., 0% (control), 25, 50, and 75% inoculated with a proportional amount of cow dung (CD) as inoculum. The results on biogas production revealed that SMS 50% treatment yielded the highest biogas volume (8834 mL or 11.93 mL/g of organic carbon) and methane contents (61%) along with maximum reduction of physicochemical and proximate parameters of slurry. Furthermore, the biogas digestate from 50% treatment further helped to increase the seed germination (93.25%), seedling length (9.2 cm), seedling root length (4.19 cm), plant height (53.10 cm), chlorophyll content (3.38 mg/g), total yield (1.86 kg/plant), flavonoids (5.06 mg/g), phenolics (2.78 mg/g), and tannin (3.40 mg/g) contents of tomato significantly (p < 0.05) in the 10% loading rate. The findings of this study suggest sustainable upcycling of SMS inspired by a circular economy approach through synergistic production of bioenergy and secondary fruit crops, which could potentially contribute to minimize the carbon footprints of the mushroom production sector.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horticulturaearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horticulturae
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horticulturae
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horticulturaearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horticulturae
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horticulturae
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Syeda Fasiha Amjad; Nida Mansoora; Samia Yaseen; Afifa Kamal; +6 Authors

    On a global scale, wheat (Triticum aestivum L.) is a widely cultivated crop among all cereals. Increasing pollution, population expansion, socio-economic development, ecological and industrial policies have induced changes in overall climatic attributes. The impact of these factors on agriculture dynamics has led to various biotic and abiotic stresses, i.e., significant decline in rainfall, directly affect sustainable agriculture. Increasing abiotic stresses have a direct negative effect on worldwide crop production. More promising and improved stress-tolerant strategies that can help to feed the increasing global population are required. A laboratory experiment was performed on two of the latest wheat (Triticum aestivum L.) genotypes (Akbar 2019 and Anaj 2017) from Punjab Pakistan, to determine the influence of seed priming with thiamine (vitamin B1) along with soil inoculation of Endophytic bacterial strains to mitigate the effects of drought stress at different degrees. Results revealed that thiamine helped in the remote germination; seeds of Anaj 2017 germinated within 16 hours while Akbar 2019 germinated after one day. Overall growth parameters of Anaj 2017 were negatively affected even under higher levels of drought stress, while Akbar 2019 proved to be a susceptible cultivar. A significant increase in RFW (54%), SFW (85%), RDW (69%), SDW (67%) and TChl (136%) validated the effectiveness of D-T3 compared to C-T0 in drought stress. Significant decrease in MDA, EL and H2O2 signified the imperative function of D-T3 over C-T0 under drought stress. In conclusion and recommendation, we declare that farmers can get better wheat growth under drought stress by application of D-T3 over C-T0.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mustafa El-Rawy; Okke Batelaan; Nassir Al-Arifi; Ali Alotaibi; +2 Authors

    In the coming years, climate change is predicted to impact irrigation water demand considerably, particularly in semi-arid regions. The aim of this research is to investigate the expected adverse impacts of climate change on water irrigation management in Saudi Arabia. We focus on the influence of climate change on irrigation water requirements in the Al Quassim (97,408 ha) region. Different climate models were used for the intermediate emission SSP2-4.5 and the high emission SSP5-8.5 Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios. The FAO-CROPWAT 8.0 model was used to calculate reference evapotranspiration (ETo) using weather data from 13 stations from 1991 to 2020 and for both the SSP2-4.5 and SSP5-8.5 scenarios for the 2040s, 2060s, 2080s, and 2100s. The findings indicated that, for the 2100s, the SSP2-4.5 and SSP5-8.5 scenarios forecast annual average ETo increases of 0.35 mm/d (6%) and 0.7 mm/d (12.0%), respectively. Net irrigation water requirement (NIWR) and growth of irrigation water requirement (GIWR) for the main crops in the Al Quassim region were assessed for the current, SSP2-4.5, and SSP5-8.5 scenarios. For SSP5-8.5, the GIWR for the 2040s, 2060s, 2080s, and 2100s are expected to increase by 2.7, 6.5, 8.5, and 12.4%, respectively, compared to the current scenario (1584.7 million m3). As a result, there will be higher deficits in 2100 under SSP5-8.5 for major crops, with deficits of 15.1%, 10.7%, 8.3%, 13.9%, and 10.7% in the crop areas of wheat, clover, maize, other vegetables, and dates, respectively. Optimal irrigation planning, crop pattern selection, and modern irrigation technologies, combined with the proposed NIWR values, can support water resources management. The findings can assist managers and policymakers in better identifying adaptation strategies for areas with similar climates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Samy E. Elshaer; Gamal M. Hamad; Elsayed E. Hafez; Hoda H. Baghdadi; +2 Authors

    The goal of this study was to investigate the effects of three different extracts of Saussurea costus roots (ethanol, methanol, and water) as a food additive in alleviating the harmful effect of sodium nitrite in rat meals. Thirty-five adult male rats were divided into five groups as follows: control, sodium nitrite (NaNO2; 75 mg/kg BW, single oral dose), S. costus 70% ethanol, 70% methanol, and aqueous extracts (300 mg/kg BW), respectively for four weeks followed by a single dose of NaNO2 24h before decapitation. Results showed that the 70% ethanol extract of S. costus has a higher concentration of total phenolic content, total flavonoids, and antioxidant effect than the 70% methanol and water extracts. Rats pretreated with S. costus extracts reduced the harmful effects induced by NaNO2 and improved the hematological parameters, liver, and kidney function biomarkers as well as lipid profile as compared to the NaNO2 group. Furthermore, S. costus improved the histopathological alterations in the liver and kidney induced by NaNO2 and improved meat sensory evaluation. Conclusively, the 70% ethanol extract of S. costus roots is the most effective extract as an antioxidant against the toxicity of sodium nitrite in male rats and might be used safely as a natural additive in the food industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food and Chemical To...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food and Chemical Toxicology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food and Chemical To...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food and Chemical Toxicology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: János Kátai; Ágnes Oláh Zsuposné; Magdolna Tállai; Tarek Alshaal;

    Water stress and nutrient supply are two of the most ubiquitous global changes that surely drive substantial variations not only in agricultural productivity but also extend to alert soil living organisms. The present study aims to understand the intrinsic changes in the composition of soil populations and their functions due to the interaction between long-term fertilization and rainfall fluctuations, seeing whether fertilization history would render the soil microbial communities and their activities more resistant to water stress or not. The experiment was established in 1988 on a typical meadow soil (Vertisols) as a rainfed maize monoculture receiving six elevated rates of NPK annually. The 30-year average annual precipitation of the growing season in this region is 345.1 mm. However, in 2010 rainfall was 106.1% greater than the average, while in 2011 it was 26.5% lower. The results show that long-term NPK fertilization has made the soil microbes more tolerant to changes in soil moisture content resulting from rainfall fluctuations. Soil microbes and their activities, however, did not follow a dose-response relationship of NPK as soil moisture content was the main driving factor. Numbers of total fungi, cellulose decomposing bacteria, and nitrifying bacteria increased as rainfall in 2010 increased. Moreover, microbial biomass carbon in 2010 was almost 2-fold higher than in 2009. Soil respiration in 2010 was 11 and 35% higher than in 2009 and 2011, respectively. Otherwise, high rainfall in 2010 significantly diminished soil NO3- content and nitrification rate. Soil enzyme activity showed a higher response to soil moisture than the rate of NPK. The highest activity of phosphatase, dehydrogenase, and saccharase was measured in the driest year (2011), while urease displayed its highest activity in 2010. High rates of NPK significantly reduced soil dehydrogenase activity. These results illustrate how important it is for fertilizer programs to be flexible to match expected climate change in order to improve productivity and reduce environmental pollution.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdullah Al Mahmud; M. Jahangir Alam; Bimal Chandra Kundu; Milan Skalicky; +8 Authors

    International Potato Center (CIP), -bred potato genotypes produce various yields under heat stress conditions due to being sown late. To explore options for achieving this, a replicated experiment was conducted at the field of Tuber Crops Research Sub-Centre, Bangladesh Agricultural Research Institute, Bogura, Bangladesh to evaluate the performance of fourteen CIP-bred potato genotypes with two controls (Asterix and Granola). The experiment was laid out in a split-plot design with three replications. Several indices were applied to find out the suitable genotypes under heat stress. The plant height increased by 34.61% under heat stress, which was common in all the potato genotypes. Similarly, other yield-participating characters like stem per hill, canopy coverage (%), plant vigor, and tuber number per plant were also increased under heat stress conditions. However, the tuber yield was decreased by 6.30% and 11.41%, respectively when harvested at 70 and 90 days after plantation. Moreover, “CIP-203” yielded the highest (40.66 t ha−1) in non-stressed whereas, “CIP-118” yielded the highest (32.89 t/ha) in stressed conditions. Likewise, the bred “CIP-218” and “CIP-118” performed better under both growing conditions and yielded >35.00 t ha−1. According to a rank-sum test, among the fourteen potato genotypes, “CIP-218”, “LB-7”, “CIP-118”, “CIP-232”, and “CIP-112” were selected as heat-tolerant potatoes and can grow in both growing conditions with higher yield potential.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
857 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fouad M.F. Elshaghabee; Fouad M.F. Elshaghabee; Wilhelm eBockelmann; Diana eMeske; +4 Authors

    Pour obtenir un aperçu spécifique des rôles que les micro-organismes pourraient jouer dans la stéatose hépatique non alcoolique (NAFLD), certaines bactéries intestinales et lactiques et une levure (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) ont été caractérisées par une chromatographie liquide haute performance pour la production d'éthanol lorsqu'elles sont cultivées sur différents glucides : hexoses (glucose et fructose), pentoses (arabinose et ribose), disaccharides (lactose et lactulose) et inuline. Les quantités les plus élevées d'éthanol ont été produites par S. cerevisiae, L. fermentum et W. confusa sur le glucose et par S. cerevisiae et W. confusa sur le fructose. En raison de la mannitol-déshydrogénase exprimée dans L. fermentum, la production d'éthanol sur le fructose a été significativement réduite (P < 0,05). Le pyruvate et le citrate, deux accepteurs d'électrons potentiels pour la régénération du NAD+/NADP+, ont considérablement réduit la production d'éthanol avec de l'acétate produit à la place dans L. fermentum cultivé sur glucose et W. confusa cultivé sur glucose et fructose, respectivement. Dans les boues fécales préparées à partir des matières fécales de quatre volontaires en surpoids, on a constaté que l'éthanol était produit lors de l'ajout de fructose. L'ajout d'A. caccae, L. acidophilus, L. fermentum, ainsi que de citrate et de pyruvate, respectivement, a aboli la production d'éthanol. Cependant, l'ajout de W. confusa a entraîné une augmentation significative (P < 0,05) de la production d'éthanol. Ces résultats indiquent que des micro-organismes comme W. confusa, une bactérie lactique hétéro-fermentaire, négative à la mannitol-déshydrogénase, peuvent favoriser la NAFLD par l'éthanol produit à partir de la fermentation du sucre, tandis que d'autres bactéries intestinales et des bactéries lactiques homo- et hétéro-fermentaires mais positives à la mannitol-déshydrogénase peuvent ne pas favoriser la NAFLD. En outre, nos études indiquent que les facteurs alimentaires interférant avec le microbiote gastro-intestinal et le métabolisme microbien peuvent être importants dans la prévention ou la promotion de la NAFLD. Para obtener información específica sobre los roles que podrían desempeñar los microorganismos en la enfermedad del hígado graso no alcohólico (NAFLD, por sus siglas en inglés), algunas bacterias intestinales y del ácido láctico y una levadura (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) se caracterizaron por cromatografía líquida de alto rendimiento para la producción de etanol cuando se cultivaron en diferentes carbohidratos: hexosas (glucosa y fructosa), pentosas (arabinosa y ribosa), disacáridos (lactosa y lactulosa) e inulina. Las cantidades más altas de etanol fueron producidas por S. cerevisiae, L. fermentum y W. confusa en glucosa y por S. cerevisiae y W. confusa en fructosa. Debido a la manitol-deshidrogenasa expresada en L. fermentum, la producción de etanol en fructosa se redujo significativamente (P < 0.05). El piruvato y el citrato, dos aceptores de electrones potenciales para la regeneración de NAD+/NADP+, redujeron drásticamente la producción de etanol con acetato producido en su lugar en L. fermentum cultivado en glucosa y W. confusa cultivado en glucosa y fructosa, respectivamente. En suspensiones fecales preparadas a partir de heces de cuatro voluntarios con sobrepeso, se encontró que el etanol se producía tras la adición de fructosa. La adición de A. caccae, L. acidophilus, L. fermentum, así como citrato y piruvato, respectivamente, abolió la producción de etanol. Sin embargo, la adición de W. confusa resultó en un aumento significativo (P < 0.05) de la producción de etanol. Estos resultados indican que microorganismos como W. confusa, una bacteria de ácido láctico hetero-fermentativa, negativa para manitol-deshidrogenasa, pueden promover NAFLD a través del etanol producido a partir de la fermentación de azúcar, mientras que otras bacterias intestinales y bacterias de ácido láctico homo- y hetero-fermentativas pero positivas para manitol-deshidrogenasa pueden no promover NAFLD. Además, nuestros estudios indican que los factores dietéticos que interfieren con la microbiota gastrointestinal y el metabolismo microbiano pueden ser importantes para prevenir o promover la EHGNA. To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. لاكتساب بعض الأفكار المحددة حول الأدوار التي قد تلعبها الكائنات الحية الدقيقة في مرض الكبد الدهني غير الكحولي (NAFLD)، تميزت بعض بكتيريا حمض الأمعاء واللاكتيك وخميرة واحدة (Anaerostipes caccae، Bacteroides thetaiotaomicron، Bifidobacterium longum، Enterococcus fecalis، Escherichia coli، Lactobacillus acidophilus، Lactobacillus fermentum، Lactobacillus plantarum، Weissella confusa، Saccharomyces cerevisiae) بتصوير سائل عالي الأداء لإنتاج الإيثانول عند زراعته على كربوهيدرات مختلفة: hexoses (الجلوكوز والفركتوز)، pentoses (الأرابينوز والريبوز)، disaccharides (اللاكتوز واللاكتولوز)، و inulin. تم إنتاج أعلى كميات من الإيثانول بواسطة S. cerevisiae و L. fermentum و W. confusa على الجلوكوز و S. cerevisiae و W. confusa على الفركتوز. بسبب نازعة هيدروجين المانيتول المعبر عنها في L. fermentum، انخفض إنتاج الإيثانول على الفركتوز بشكل كبير (P < 0.05). قلل البيروفات والسيترات، وهما مستقبلان محتملان للإلكترون لتجديد NAD +/NADP+، بشكل كبير من إنتاج الإيثانول مع الأسيتات المنتجة بدلاً من ذلك في L. fermentum المزروع على الجلوكوز و W. confusa المزروع على الجلوكوز والفركتوز، على التوالي. في الملاط البرازي الذي تم تحضيره من براز أربعة متطوعين يعانون من زيادة الوزن، وجد أن الإيثانول يتم إنتاجه عند إضافة الفركتوز. إضافة A. caccae، L. acidophilus، L. fermentum، وكذلك السترات والبيروفات، على التوالي، ألغت إنتاج الإيثانول. ومع ذلك، أدت إضافة W. confusa إلى زيادة كبيرة في إنتاج الإيثانول (P < 0.05). تشير هذه النتائج إلى أن الكائنات الحية الدقيقة مثل W. confusa، وهي بكتيريا حمض اللاكتيك السلبية غير المتجانسة، قد تعزز NAFLD من خلال الإيثانول المنتج من تخمير السكر، في حين أن البكتيريا المعوية الأخرى وبكتيريا حمض اللاكتيك الإيجابية غير المتجانسة ولكن غير المتجانسة قد لا تعزز NAFLD. أيضًا، تشير دراساتنا إلى أن العوامل الغذائية التي تتداخل مع الكائنات الحية الدقيقة في الجهاز الهضمي والتمثيل الغذائي الميكروبي قد تكون مهمة في منع أو تعزيز NAFLD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/fk...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/z0...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    101
    citations101
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Microbi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/fk...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/z0...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gaber M. Abogadallah; Reham M. Nada; Enas G. Badran; Mamdouh M. Nemat Alla;

    Nine-day-old wheat seedlings were treated with NaCl at 75, 150, and 225 mM for 15 days in the absence or presence of 5 mM glycine. NaCl particularly at 150 and 225 mM led to significant reductions in fresh and dry weights, chlorophylls, carotenoids, Ca(2+), K(+), and K(+)/Na(+) ratio. Contrarily, there were significant accumulations in Na(+), malondialdehyde (MDA), H2O2, soluble sugars, and proline concomitant with inhibitions in enzymatic and non-enzymatic antioxidants and in Rubisco. In the meantime, the transcript level of alternative oxidase (AOX) was highly upregulated by NaCl; the upregulation was greatest with the lowest concentration. However, the transcript level of H(+)/Na(+) antiporter exchanger (NHX1) was decreased by 75 and 150 mM NaCl but increased by 225 mM. Similarly, the transcript level of salt overly sensitive 1 (SOS1) was upregulated by only 225 mM. Nonetheless, the application of glycine mostly overcame the varied impacts of NaCl on growth, MDA, H2O2, pigments, metabolites, and elements. Moreover, glycine elevated enzymatic and non-enzymatic antioxidants to reach most likely the levels of the respective control. On the contrary, much induction was detected in Rubisco. The transcript levels of AOX, NHX1, and SOS1 were further upregulated; the upregulation of AOX was most pronounced with the highest NaCl concentration in the presence of glycine and only with 75 and 150 mM NaCl for NHX1 and SOS1. The increase in antioxidants concomitant with the decrease in MDA and H2O2 reveals that ROS scavenging system became more efficient in NaCl-treated wheat following glycine application, concluding that glycine could ameliorate wheat tolerance to salinity. Moreover, lowering Na(+) by glycine and mitigation of the decreased K(+)/Na(+) ratio synchronous with recovery in growth reduction and stimulation of AOX, NHX1 and SOS1 may emphasize the role of glycine in stimulating gene expression for raising wheat tolerance to NaCl.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PROTOPLASMA
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    PROTOPLASMA
    Article . 2016
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PROTOPLASMA
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      PROTOPLASMA
      Article . 2016
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ahmed A. El Baroudy; Abdelraouf. M. Ali; Elsayed Said Mohamed; Farahat S. Moghanm; +9 Authors

    Today, the global food security is one of the most pressing issues for humanity, and, according to Food and Agriculture Organisation (FAO), the increasing demand for food is likely to grow by 70% until 2050. In this current condition and future scenario, the agricultural production is a critical factor for global food security and for facing the food security challenge, with specific reference to many African countries, where a large quantities of rice are imported from other continents. According to FAO, to face the Africa’s inability to reach self-sufficiency in rice, it is urgent “to redress to stem the trend of over-reliance on imports and to satisfy the increasing demand for rice in areas where the potential of local production resources is exploited at very low levels” The present study was undertaken to design a new method for land evaluation based on soil quality indicators and remote sensing data, to assess and map soil suitability for rice crop. Results from the investigations, performed in some areas in the northern part of the Nile Delta, were compared with the most common approaches, two parametric (the square root, Storie methods) and two qualitative (ALES and MicrioLEIS) methods. From the qualitative point of view, the results showed that: (i) all the models provided partly similar outputs related to the soil quality assessments, so that the distinction using the crop productivity played an important role, and (ii) outputs from the soil suitability models were consistent with both the satellite Sentinel-2 Normalize Difference Vegetation Indices (NDVI) during the crop growth and the yield production. From the quantitative point of view, the comparison of the results from the diverse approaches well fit each other, and the model, herein proposed, provided the highest performance. As a whole, a significant increasing in R2 values was provided by the model herein proposed, with R2 equal to 0.92, followed by MicroLES, Storie, ALES and Root as R2 with value equal to 0.87, 0.86, 0.84 and 0.84, respectively, with increasing percentage in R2 equal to 5%, 6% and 8%, respectively. Furthermore, the proposed model illustrated that around (i) 44.44% of the total soils of the study area are highly suitable, (ii) 44% are moderately suitable, and (iii) approximately 11.56% are unsuitable for rice due to their adverse physical and chemical soil properties. The approach herein presented can be promptly re-applied in arid region and the quantitative results obtained can be used by decision makers and regional governments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2020
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2020
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hani A. Alfheeaid; Hassan Barakat; Sami A. Althwab; Khalid Hamid Musa; +1 Authors

    With the increasing global nutritional bar market, developing and formulating innovative high-energy and protein bars to compensate for nutrients using date fruits is beneficial for health-conscious individuals. The current research was undertaken to study the composition and physicochemical characteristics of innovative high-energy and high-protein bars using two combinations of Sukkari dates or fruit mixtures as a base. Fifty percent of either Sukkari date paste or dried fruit mixture (25% raisin, 12.5% fig, and 12.5% apricot) combined with other different ingredients was used to produce a date-based bar (DBB) or fruit-based bar (FBB). Proximate composition, sugar content, amino and fatty acid profiles, minerals and vitamins, phytochemicals, antioxidant activity, and visual color parameters of the DBB and the FBB were determined and statistically compared. Proximate analysis revealed higher moisture and fat content in the FBB than the DBB, while ash and crude fiber were higher in the DBB than the FBB. The protein content in the DBB and the FBB was not statistically different. Both prepared bars exuded around 376–378 kcal 100 g−1 fresh weight. Sugar profile analysis of the DBB and the FBB showed dependable changes based on date or fruit content. Fructose, glucose, and maltose contents were higher in the FBB than in the DBB, while sucrose content was higher in the DBB than in the FBB. The DBB showed significantly higher content in Ca, Cu, Fe, Zn, Mn, and Se and significantly lower content in Mg, K, and Na than the FBB, with no variation in phosphorus content. The DBB and the FBB contained both essential (EAA) and non-essential (NEAA) amino acids. The DBB scored higher Lysine, Methionine, Histidine, Threonine, Phenylalanine, Isoleucine, and Cystine contents than the FBB, while the FBB scored only higher Leucine and Valine contents than the DBB. Seventeen saturated fatty acids were identified in the DBB and the FBB, with Palmitic acid (C16:0) as the predominant fatty acid. Oleic acid (C18:1n9c) was predominant among seven determined monounsaturated fatty acids. Linoleic fatty acid (C18:2n6c) was predominant among eight identified polyunsaturated fatty acids. In addition, α-Linolenic (C18:3n3) was detected in a considerable amount. However, in both the DBB and the FBB, the content and distribution of fatty acids were not remarkably changed. Regarding phytochemicals and bioactive compounds, the FBB was significantly higher in total phenolic content (TPC), total flavonoids (TF), and total flavonols (TFL) contents and scavenging activity against DPPH and ABTS free radicals than the DBB. The DBB and the FBB showed positive a* values, indicating a reddish color. The b* values were 27.81 and 28.54 for the DBB and the FBB, respectively. The DBB is affected by the lower L* value and higher browning index (BI) to make its color brownish. Sensory evaluation data showed that panelists significantly preferred the DBB over the FBB. In conclusion, processing and comparing these bars indicated that using Sukkari dates is a nutrient-dense, convenient, economical, and better sugar alternative that helps combat the calorie content. Thus, scaling up the use of dates instead of fruits in producing high-energy and protein bars commercially is highly recommended.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Foodsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Foods
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Foodsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Foods
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pankaj Kumar; Ebrahem M. Eid; Mostafa A. Taher; Mohamed H. E. El-Morsy; +11 Authors

    Agro-wastes, such as crop residues, leaf litter, and sawdust, are major contributors to global greenhouse gas emissions, and consequently a major concern for climate change. Nowadays, mushroom cultivation has appeared as an emerging agribusiness that helps in the sustainable management of agro-wastes. However, partial utilization of agro-wastes by mushrooms results in the generation of a significant quantity of spent mushroom substrates (SMS) that have continued to become an environmental problem. In particular, Shiitake (Lentinula edodes Berk.) mushrooms can be grown on different types of agro-wastes and also generate a considerable amount of SMS. Therefore, this study investigates the biotransformation of SMS obtained after Shiitake mushroom cultivation into biogas and attendant utilization of slurry digestate (SD) in tomato (Solanum lycopersicum L.) crop fertilization. Biogas production experiments were conducted anaerobically using four treatments of SMS, i.e., 0% (control), 25, 50, and 75% inoculated with a proportional amount of cow dung (CD) as inoculum. The results on biogas production revealed that SMS 50% treatment yielded the highest biogas volume (8834 mL or 11.93 mL/g of organic carbon) and methane contents (61%) along with maximum reduction of physicochemical and proximate parameters of slurry. Furthermore, the biogas digestate from 50% treatment further helped to increase the seed germination (93.25%), seedling length (9.2 cm), seedling root length (4.19 cm), plant height (53.10 cm), chlorophyll content (3.38 mg/g), total yield (1.86 kg/plant), flavonoids (5.06 mg/g), phenolics (2.78 mg/g), and tannin (3.40 mg/g) contents of tomato significantly (p < 0.05) in the 10% loading rate. The findings of this study suggest sustainable upcycling of SMS inspired by a circular economy approach through synergistic production of bioenergy and secondary fruit crops, which could potentially contribute to minimize the carbon footprints of the mushroom production sector.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horticulturaearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horticulturae
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horticulturae
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horticulturaearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horticulturae
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horticulturae
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Syeda Fasiha Amjad; Nida Mansoora; Samia Yaseen; Afifa Kamal; +6 Authors

    On a global scale, wheat (Triticum aestivum L.) is a widely cultivated crop among all cereals. Increasing pollution, population expansion, socio-economic development, ecological and industrial policies have induced changes in overall climatic attributes. The impact of these factors on agriculture dynamics has led to various biotic and abiotic stresses, i.e., significant decline in rainfall, directly affect sustainable agriculture. Increasing abiotic stresses have a direct negative effect on worldwide crop production. More promising and improved stress-tolerant strategies that can help to feed the increasing global population are required. A laboratory experiment was performed on two of the latest wheat (Triticum aestivum L.) genotypes (Akbar 2019 and Anaj 2017) from Punjab Pakistan, to determine the influence of seed priming with thiamine (vitamin B1) along with soil inoculation of Endophytic bacterial strains to mitigate the effects of drought stress at different degrees. Results revealed that thiamine helped in the remote germination; seeds of Anaj 2017 germinated within 16 hours while Akbar 2019 germinated after one day. Overall growth parameters of Anaj 2017 were negatively affected even under higher levels of drought stress, while Akbar 2019 proved to be a susceptible cultivar. A significant increase in RFW (54%), SFW (85%), RDW (69%), SDW (67%) and TChl (136%) validated the effectiveness of D-T3 compared to C-T0 in drought stress. Significant decrease in MDA, EL and H2O2 signified the imperative function of D-T3 over C-T0 under drought stress. In conclusion and recommendation, we declare that farmers can get better wheat growth under drought stress by application of D-T3 over C-T0.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mustafa El-Rawy; Okke Batelaan; Nassir Al-Arifi; Ali Alotaibi; +2 Authors

    In the coming years, climate change is predicted to impact irrigation water demand considerably, particularly in semi-arid regions. The aim of this research is to investigate the expected adverse impacts of climate change on water irrigation management in Saudi Arabia. We focus on the influence of climate change on irrigation water requirements in the Al Quassim (97,408 ha) region. Different climate models were used for the intermediate emission SSP2-4.5 and the high emission SSP5-8.5 Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios. The FAO-CROPWAT 8.0 model was used to calculate reference evapotranspiration (ETo) using weather data from 13 stations from 1991 to 2020 and for both the SSP2-4.5 and SSP5-8.5 scenarios for the 2040s, 2060s, 2080s, and 2100s. The findings indicated that, for the 2100s, the SSP2-4.5 and SSP5-8.5 scenarios forecast annual average ETo increases of 0.35 mm/d (6%) and 0.7 mm/d (12.0%), respectively. Net irrigation water requirement (NIWR) and growth of irrigation water requirement (GIWR) for the main crops in the Al Quassim region were assessed for the current, SSP2-4.5, and SSP5-8.5 scenarios. For SSP5-8.5, the GIWR for the 2040s, 2060s, 2080s, and 2100s are expected to increase by 2.7, 6.5, 8.5, and 12.4%, respectively, compared to the current scenario (1584.7 million m3). As a result, there will be higher deficits in 2100 under SSP5-8.5 for major crops, with deficits of 15.1%, 10.7%, 8.3%, 13.9%, and 10.7% in the crop areas of wheat, clover, maize, other vegetables, and dates, respectively. Optimal irrigation planning, crop pattern selection, and modern irrigation technologies, combined with the proposed NIWR values, can support water resources management. The findings can assist managers and policymakers in better identifying adaptation strategies for areas with similar climates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Samy E. Elshaer; Gamal M. Hamad; Elsayed E. Hafez; Hoda H. Baghdadi; +2 Authors

    The goal of this study was to investigate the effects of three different extracts of Saussurea costus roots (ethanol, methanol, and water) as a food additive in alleviating the harmful effect of sodium nitrite in rat meals. Thirty-five adult male rats were divided into five groups as follows: control, sodium nitrite (NaNO2; 75 mg/kg BW, single oral dose), S. costus 70% ethanol, 70% methanol, and aqueous extracts (300 mg/kg BW), respectively for four weeks followed by a single dose of NaNO2 24h before decapitation. Results showed that the 70% ethanol extract of S. costus has a higher concentration of total phenolic content, total flavonoids, and antioxidant effect than the 70% methanol and water extracts. Rats pretreated with S. costus extracts reduced the harmful effects induced by NaNO2 and improved the hematological parameters, liver, and kidney function biomarkers as well as lipid profile as compared to the NaNO2 group. Furthermore, S. costus improved the histopathological alterations in the liver and kidney induced by NaNO2 and improved meat sensory evaluation. Conclusively, the 70% ethanol extract of S. costus roots is the most effective extract as an antioxidant against the toxicity of sodium nitrite in male rats and might be used safely as a natural additive in the food industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food and Chemical To...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food and Chemical Toxicology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food and Chemical To...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food and Chemical Toxicology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: János Kátai; Ágnes Oláh Zsuposné; Magdolna Tállai; Tarek Alshaal;

    Water stress and nutrient supply are two of the most ubiquitous global changes that surely drive substantial variations not only in agricultural productivity but also extend to alert soil living organisms. The present study aims to understand the intrinsic changes in the composition of soil populations and their functions due to the interaction between long-term fertilization and rainfall fluctuations, seeing whether fertilization history would render the soil microbial communities and their activities more resistant to water stress or not. The experiment was established in 1988 on a typical meadow soil (Vertisols) as a rainfed maize monoculture receiving six elevated rates of NPK annually. The 30-year average annual precipitation of the growing season in this region is 345.1 mm. However, in 2010 rainfall was 106.1% greater than the average, while in 2011 it was 26.5% lower. The results show that long-term NPK fertilization has made the soil microbes more tolerant to changes in soil moisture content resulting from rainfall fluctuations. Soil microbes and their activities, however, did not follow a dose-response relationship of NPK as soil moisture content was the main driving factor. Numbers of total fungi, cellulose decomposing bacteria, and nitrifying bacteria increased as rainfall in 2010 increased. Moreover, microbial biomass carbon in 2010 was almost 2-fold higher than in 2009. Soil respiration in 2010 was 11 and 35% higher than in 2009 and 2011, respectively. Otherwise, high rainfall in 2010 significantly diminished soil NO3- content and nitrification rate. Soil enzyme activity showed a higher response to soil moisture than the rate of NPK. The highest activity of phosphatase, dehydrogenase, and saccharase was measured in the driest year (2011), while urease displayed its highest activity in 2010. High rates of NPK significantly reduced soil dehydrogenase activity. These results illustrate how important it is for fertilizer programs to be flexible to match expected climate change in order to improve productivity and reduce environmental pollution.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecotoxicology and Environmental Safety
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecotoxicology and Environmental Safety
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abdullah Al Mahmud; M. Jahangir Alam; Bimal Chandra Kundu; Milan Skalicky; +8 Authors

    International Potato Center (CIP), -bred potato genotypes produce various yields under heat stress conditions due to being sown late. To explore options for achieving this, a replicated experiment was conducted at the field of Tuber Crops Research Sub-Centre, Bangladesh Agricultural Research Institute, Bogura, Bangladesh to evaluate the performance of fourteen CIP-bred potato genotypes with two controls (Asterix and Granola). The experiment was laid out in a split-plot design with three replications. Several indices were applied to find out the suitable genotypes under heat stress. The plant height increased by 34.61% under heat stress, which was common in all the potato genotypes. Similarly, other yield-participating characters like stem per hill, canopy coverage (%), plant vigor, and tuber number per plant were also increased under heat stress conditions. However, the tuber yield was decreased by 6.30% and 11.41%, respectively when harvested at 70 and 90 days after plantation. Moreover, “CIP-203” yielded the highest (40.66 t ha−1) in non-stressed whereas, “CIP-118” yielded the highest (32.89 t/ha) in stressed conditions. Likewise, the bred “CIP-218” and “CIP-118” performed better under both growing conditions and yielded >35.00 t ha−1. According to a rank-sum test, among the fourteen potato genotypes, “CIP-218”, “LB-7”, “CIP-118”, “CIP-232”, and “CIP-112” were selected as heat-tolerant potatoes and can grow in both growing conditions with higher yield potential.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.