- home
- Advanced Search
- Energy Research
- CN
- ES
- EU
- Remote Sensing
- Energy Research
- CN
- ES
- EU
- Remote Sensing
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Liming He; Rong Wang; Georgy Mostovoy; Jane Liu; Jing M. Chen; Jiali Shang; Jiangui Liu; Heather McNairn; Jarrett Powers;doi: 10.3390/rs13040806
We evaluate the potential of using a process-based ecosystem model (BEPS) for crop biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP), net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while the slopes of the regression models vary for individual crop type, indicating the need for calibration of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is also effective in AGB mapping for some crop types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xinzhe Li; Jia Zhou; Yangbin Huang; Ruyun Wang; Tao Lu;doi: 10.3390/rs15174280
A number of previous studies have contributed to a better understanding of the thermal impacts of dam-related reservoirs on stream temperature, but very few studies have focused on air temperature, especially at the catchment scale. In addition, due to the lack of quantitative analysis, the identification of the effects of water impoundment on regional air temperature is still lacking. We investigated the impacts of reservoirs on the regional air temperature changes before and after two large dam constructions in the lower Jinsha River located in southwest China, by using a 40 year record of reanalysis data at 90 m resolutions. Furthermore, the long short-term memory (LSTM) model was also employed to construct an impoundment effect on the temperature (IET) index. Research results indicate that compared to the pre-impoundment period (1980–2012), the variations in the air temperature at the catchment scale were reduced during the post-impoundment period (2013–2019). The annual maximum air temperature decreased by 0.4 °C relative to the natural regimes. In contrast, the cumulative effects of dam-related reservoirs increased the annual mean and minimum air temperature by 0.1 °C and 1.0 °C, respectively. Warming effects prevailed during the dry season and in the regions with high elevations, while cooling effects dominated within a 4 km buffer of the reservoirs. Therefore, this study offers important insights about the impacts of anthropogenic impoundments on air temperature changes, which could be useful for policymakers to have a more informed and profound understanding of local climate changes in dammed areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15174280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15174280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:MDPI AG Funded by:NSF | IGERT Program in Adaptive...NSF| IGERT Program in Adaptive ManagementAuthors: Miguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; +3 AuthorsMiguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; Erin Bunting; Jane Southworth; Likai Zhu;doi: 10.3390/rs5126513
Deconstructing the drivers of large-scale vegetation change is critical to predicting and managing projected climate and land use changes that will affect regional vegetation cover in degraded or threated ecosystems. We investigate the shared dynamics of spatially variable vegetation across three large watersheds in the southern Africa savanna. Dynamic Factor Analysis (DFA), a multivariate time-series dimension reduction technique, was used to identify the most important physical drivers of regional vegetation change. We first evaluated the Advanced Very High Resolution Radiometer (AVHRR)- vs. the Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Difference Vegetation Index (NDVI) datasets across their overlapping period (2001–2010). NDVI follows a general pattern of cyclic seasonal variation, with distinct spatio-temporal patterns across physio-geographic regions. Both NDVI products produced similar DFA models, although MODIS was simulated better. Soil moisture and precipitation controlled NDVI for mean annual precipitation (MAP) < 750 mm, and above this, evaporation and mean temperature dominated. A second DFA with the full AVHRR (1982–2010) data found that for MAP < 750 mm, soil moisture and actual evapotranspiration control NDVI dynamics, followed by mean and maximum temperatures. Above 950 mm, actual evapotranspiration and precipitation dominate. The quantification of the combined spatio-temporal environmental drivers of NDVI expands our ability to understand landscape level changes in vegetation evaluated through remote sensing and improves the basis for the management of vulnerable regions, like the southern Africa savannas.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 70 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Wenjuan Shen; Mingshi Li; Chengquan Huang; Anshi Wei;doi: 10.3390/rs8070595
Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting and quantifying the effect of forest disturbance on the terrestrial carbon cycle. We estimated AGB from 1990 to 2011 in northern Guangdong, China, based on a spatially explicit dataset derived from six years of national forest inventory (NFI) plots, Landsat time series imagery (1986–2011) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radars (PALSAR) 25 m mosaic data (2007–2010). Four types of variables were derived for modeling and assessment. The random forest approach was used to seek the optimal variables for mapping and validation. The root mean square error (RMSE) of plot-level validation was between 6.44 and 39.49 (t/ha), the normalized root-mean-square error (NRMSE) was between 7.49% and 19.01% and mean absolute error (MAE) was between 5.06 and 23.84 t/ha. The highest coefficient of determination R2 of 0.8 and the lowest NRMSE of 7.49% were reported in 2006. A clear increasing trend of mean AGB from the lowest value of 13.58 t/ha to the highest value of 66.25 t/ha was witnessed between 1988 and 2000, while after 2000 there was a fluctuating ascending change, with a peak mean AGB of 67.13 t/ha in 2004. By integrating AGB change with forest disturbance, the trend in disturbance area closely corresponded with the trend in AGB decrease. To determine the driving forces of these changes, the correlation analysis was adopted and exploratory factor analysis (EFA) method was used to find a factor rotation that maximizes this variance and represents the dominant factors of nine climate elements and nine human activities elements affecting the AGB dynamics. Overall, human activities contributed more to short-term AGB dynamics than climate data. Harvesting and human-induced fire in combination with rock desertification and global warming made a strong contribution to AGB changes. This study provides valuable information for the relationships between forest AGB and climate as well as forest disturbance in subtropical zones.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:MDPI AG Funded by:EC | EURO4MEC| EURO4MSteffen Kothe; Elizabeth Good; André Obregón; Bodo Ahrens; Helga Nitsche;doi: 10.3390/rs5062943
In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG) SEVIRI (Spinning Enhanced Visible and Infrared Imager). The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP) station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2013Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5062943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2013Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5062943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Husam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; +2 AuthorsHusam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; M. Santosh; Abdullah Alamri;Landslide susceptibility modeling, an essential approach to mitigate natural disasters, has witnessed considerable improvement following advances in machine learning (ML) techniques. However, in most of the previous studies, the distribution of input data was assumed as being, and treated, as normal or Gaussian; this assumption is not always valid as ML is heavily dependent on the quality of the input data. Therefore, we examine the effectiveness of six feature transformations (minimax normalization (Std-X), logarithmic functions (Log-X), reciprocal function (Rec-X), power functions (Power-X), optimal features (Opt-X), and one-hot encoding (Ohe-X) over the 11conditioning factors (i.e., altitude, slope, aspect, curvature, distance to road, distance to lineament, distance to stream, terrain roughness index (TRI), normalized difference vegetation index (NDVI), land use, and vegetation density). We selected the frequent landslide-prone area in the Cameron Highlands in Malaysia as a case study to test this novel approach. These transformations were then assessed by three benchmark ML methods, namely extreme gradient boosting (XGB), logistic regression (LR), and artificial neural networks (ANN). The 10-fold cross-validation method was used for model evaluations. Our results suggest that using Ohe-X transformation over the ANN model considerably improved performance from 52.244 to 89.398 (37.154% improvement).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wenxu Cao; Hang Xu; Zhiqiang Zhang;doi: 10.3390/rs14174198
Global climate change profoundly influences the patterns of vegetation growth. However, the disparities in vegetation responses induced by regional climate characteristics are generally weakened in large-scale studies. Meanwhile, distinct climatic drivers of vegetation growth result in the different reactions of different vegetation types to climate variability. Hence, it is an extraordinary challenge to detect and attribute vegetation growth changes. In this study, the spatiotemporal distribution and dynamic characteristics of climate change effects on vegetation growth from 2000 to 2020 were investigated by the normalized difference vegetation index (NDVI) dataset during the growing season (April–October). Meanwhile, we further detected the climate-dominated factor between different vegetation types (i.e., forest, shrub, and grass) within the Chaohe watershed located in temperate northern China. The results revealed a continuous greening trend over the entire study period, despite slowing down since 2007 (p < 0.05). Growing-season precipitation (P) was identified as the dominant climatic factor of the greening trend (p < 0.05), and approximately 34.83% of the vegetated area exhibited a significant response to increasing P. However, continued warming-induced intensive evaporation demand caused the vegetation growth to slow down. Hereinto, the areas with a significantly positive response of forest growth to temperature decreased from 24.38% to 18.06% (p < 0.05). In addition, solar radiation (SW) corresponds to the vegetation trend in the watershed (p < 0.05), and the significantly positive SW-influenced areas increased from 9.24% and 2.64% to 11.78% and 3.37% in forests and shrubland, respectively (p < 0.05). Our findings highlight the nonlinearity of long-term vegetation growth trends with climate variation and the cause of this divergence, which provide vital insights into forecasting vegetation responses to future climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Kang Liang; Guozhen Yan;doi: 10.3390/rs9101019
Lakes in arid and semi-arid regions have an irreplaceable and important role in the local environment and wildlife habitat protection. Relict Gull (Larus relictus), which is listed as a “vulnerable” bird species in the IUCN Red List, uses only islands in lakes for habitat. The habitat with the largest colonies in Hongjian Lake (HL), which is located in Shaanxi Province in China, has been severely threatened by persistent lake shrinkage, yet the variations in the area of the lake and the islands are poorly understood due to a lack of in situ observations. In this study, using the Modified Normalized Difference Water Index, 336 Landsat remote sensing images from 1988–2015 were used to extract the monthly HL water area and lake island area, and the driving factors were investigated by correlation analysis. The results show that the lake area during 1988–2015 exhibited large fluctuations and an overall downward trend of −0.94 km2/year, and that the lake area ranged from 55.02 km2 in 1997 to 30.90 km2 in 2015. The cumulative anomaly analysis diagnosed the lake variations as two sub-periods with different characteristics and leading driving factors. The average and change trend were 52.88 and 0.21 km2/year during 1988–1998 and 38.85 and −1.04 km2/year during 1999–2015, respectively. During 1988–1998, the relatively high precipitation, low evapotranspiration, and low levels of human activity resulted in a weak increase in the area of HL. However, in 1999–2015, the more severe human activity as well as climate warming resulted in a fast decrease in the area of HL. The variations in lake island area were dependent on the area of HL, which ranged from 0.02 km2 to 0.22 km2. As the lake size declined, the islands successively outcropped in the form of the four island zones, and the two zones located in Northwest and South of HL were the most important habitats for Relict Gull. The formation of these island zones can provide enough space for Relict Gull breeding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9101019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9101019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Jie Pei; Li Wang; Xiaoyue Wang; Zheng Niu; Maggi Kelly; Xiao-Peng Song; Ni Huang; Jing Geng; Haifeng Tian; Yang Yu; Shiguang Xu; Lei Wang; Qing Ying; Jianhua Cao;doi: 10.3390/rs11172044
Since the implementation of China’s afforestation and conservation projects during recent decades, an increasing number of studies have reported greening trends in the karst regions of southwest China using coarse-resolution satellite imagery, but small-scale changes in the heterogenous landscapes remain largely unknown. Focusing on two typical karst regions in the Nandong and Xiaojiang watersheds in Yunnan province, we processed 2,497 Landsat scenes from 1988 to 2016 using the Google Earth Engine cloud platform and analyzed vegetation trends and associated drivers. We found that both watersheds experienced significant increasing trends in annual fractional vegetation cover, at a rate of 0.0027 year−1 and 0.0020 year−1, respectively. Notably, the greening trends have been intensifying during the conservation period (2001–2016) even under unfavorable climate conditions. Human-induced ecological engineering was the primary factor for the increased greenness. Moreover, vegetation change responded differently to variations in topographic gradients and lithological types. Relatively more vegetation recovery was found in regions with moderate slopes and elevation, and pure limestone, limestone and dolomite interbedded layer as well as impure carbonate rocks than non-karst rocks. Partial correlation analysis of vegetation trends and temperature and precipitation trends suggested that climate change played a minor role in vegetation recovery. Our findings contribute to an improved understanding of the mechanisms behind vegetation changes in karst areas and may provide scientific supports for local afforestation and conservation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Authors: Fazlullah Akhtar; Usman Awan; Bernhard Tischbein; Umar Liaqat;The Kabul River basin (KRB) of Afghanistan, a lifeline of around 10 million people, has multiplicity of governance, management, and development-related challenges leading to inequity, inadequacy, and unreliability of irrigation water distribution. Prior to any uplifting intervention, there is a need to evaluate the performance of irrigation system on a long term basis to identify the existing bottlenecks. Although there are several indicators available for the performance evaluation of the irrigation schemes, we used the coefficient of variation (CV) of actual evapotranspiration (ETa) in space (basin, sub-basin, and provincial level), relative evapotranspiration (RET), and temporal CV of RET, to assess the equity, adequacy, and reliability of water distribution, respectively, from 2003 to 2013. The ETa was estimated through a surface energy balance system (SEBS) algorithm and the ETa estimates were validated using the advection aridity (AA) method with a R2 value of 0.81 and 0.77 at Nawabad and Sultanpur stations, respectively. The global land data assimilation system (GLDAS) and moderate-resolution imaging spectroradiometer (MODIS) products were used as main inputs to the SEBS. Results show that the mean seasonal sub-based RET values during summer (May–September) (0.37 ± 0.06) and winter (October–April) (0.40 ± 0.08) are below the target values (RET ≥ 0.75) during 2003–2013. The CV of the mean ETa, within sub-basins and provinces for the entire study period, has an equitable distribution of water from October–January (0.09 ± 0.04), whereas the highest inequity (0.24 ± 0.08) in water distribution is during early summer. The range of the CV of the mean ETa (0.04–0.06) on a monthly and seasonal basis shows the unreliability of water supplies in several provinces or sub-basins. The analysis of the temporal CV of mean RET highlights the unreliable water supplies across the entire basin. The maximum ETa during the study period was estimated for the Shamal sub-basin (552 ± 43 mm) while among the provinces, Kunar experienced the highest ETa (544 ± 39 mm). This study highlights the dire need for interventions to improve the irrigation performance in time and space. The proposed methodology can be used as a framework for monitoring and implementing water distribution plans in future.
Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs10060972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs10060972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Liming He; Rong Wang; Georgy Mostovoy; Jane Liu; Jing M. Chen; Jiali Shang; Jiangui Liu; Heather McNairn; Jarrett Powers;doi: 10.3390/rs13040806
We evaluate the potential of using a process-based ecosystem model (BEPS) for crop biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP), net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while the slopes of the regression models vary for individual crop type, indicating the need for calibration of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is also effective in AGB mapping for some crop types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13040806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xinzhe Li; Jia Zhou; Yangbin Huang; Ruyun Wang; Tao Lu;doi: 10.3390/rs15174280
A number of previous studies have contributed to a better understanding of the thermal impacts of dam-related reservoirs on stream temperature, but very few studies have focused on air temperature, especially at the catchment scale. In addition, due to the lack of quantitative analysis, the identification of the effects of water impoundment on regional air temperature is still lacking. We investigated the impacts of reservoirs on the regional air temperature changes before and after two large dam constructions in the lower Jinsha River located in southwest China, by using a 40 year record of reanalysis data at 90 m resolutions. Furthermore, the long short-term memory (LSTM) model was also employed to construct an impoundment effect on the temperature (IET) index. Research results indicate that compared to the pre-impoundment period (1980–2012), the variations in the air temperature at the catchment scale were reduced during the post-impoundment period (2013–2019). The annual maximum air temperature decreased by 0.4 °C relative to the natural regimes. In contrast, the cumulative effects of dam-related reservoirs increased the annual mean and minimum air temperature by 0.1 °C and 1.0 °C, respectively. Warming effects prevailed during the dry season and in the regions with high elevations, while cooling effects dominated within a 4 km buffer of the reservoirs. Therefore, this study offers important insights about the impacts of anthropogenic impoundments on air temperature changes, which could be useful for policymakers to have a more informed and profound understanding of local climate changes in dammed areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15174280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs15174280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:MDPI AG Funded by:NSF | IGERT Program in Adaptive...NSF| IGERT Program in Adaptive ManagementAuthors: Miguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; +3 AuthorsMiguel A. Campo-Bescós; Miguel A. Campo-Bescós; Peter R. Waylen; Rafael Muñoz-Carpena; Erin Bunting; Jane Southworth; Likai Zhu;doi: 10.3390/rs5126513
Deconstructing the drivers of large-scale vegetation change is critical to predicting and managing projected climate and land use changes that will affect regional vegetation cover in degraded or threated ecosystems. We investigate the shared dynamics of spatially variable vegetation across three large watersheds in the southern Africa savanna. Dynamic Factor Analysis (DFA), a multivariate time-series dimension reduction technique, was used to identify the most important physical drivers of regional vegetation change. We first evaluated the Advanced Very High Resolution Radiometer (AVHRR)- vs. the Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Difference Vegetation Index (NDVI) datasets across their overlapping period (2001–2010). NDVI follows a general pattern of cyclic seasonal variation, with distinct spatio-temporal patterns across physio-geographic regions. Both NDVI products produced similar DFA models, although MODIS was simulated better. Soil moisture and precipitation controlled NDVI for mean annual precipitation (MAP) < 750 mm, and above this, evaporation and mean temperature dominated. A second DFA with the full AVHRR (1982–2010) data found that for MAP < 750 mm, soil moisture and actual evapotranspiration control NDVI dynamics, followed by mean and maximum temperatures. Above 950 mm, actual evapotranspiration and precipitation dominate. The quantification of the combined spatio-temporal environmental drivers of NDVI expands our ability to understand landscape level changes in vegetation evaluated through remote sensing and improves the basis for the management of vulnerable regions, like the southern Africa savannas.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 33visibility views 33 download downloads 70 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5126513&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Wenjuan Shen; Mingshi Li; Chengquan Huang; Anshi Wei;doi: 10.3390/rs8070595
Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting and quantifying the effect of forest disturbance on the terrestrial carbon cycle. We estimated AGB from 1990 to 2011 in northern Guangdong, China, based on a spatially explicit dataset derived from six years of national forest inventory (NFI) plots, Landsat time series imagery (1986–2011) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radars (PALSAR) 25 m mosaic data (2007–2010). Four types of variables were derived for modeling and assessment. The random forest approach was used to seek the optimal variables for mapping and validation. The root mean square error (RMSE) of plot-level validation was between 6.44 and 39.49 (t/ha), the normalized root-mean-square error (NRMSE) was between 7.49% and 19.01% and mean absolute error (MAE) was between 5.06 and 23.84 t/ha. The highest coefficient of determination R2 of 0.8 and the lowest NRMSE of 7.49% were reported in 2006. A clear increasing trend of mean AGB from the lowest value of 13.58 t/ha to the highest value of 66.25 t/ha was witnessed between 1988 and 2000, while after 2000 there was a fluctuating ascending change, with a peak mean AGB of 67.13 t/ha in 2004. By integrating AGB change with forest disturbance, the trend in disturbance area closely corresponded with the trend in AGB decrease. To determine the driving forces of these changes, the correlation analysis was adopted and exploratory factor analysis (EFA) method was used to find a factor rotation that maximizes this variance and represents the dominant factors of nine climate elements and nine human activities elements affecting the AGB dynamics. Overall, human activities contributed more to short-term AGB dynamics than climate data. Harvesting and human-induced fire in combination with rock desertification and global warming made a strong contribution to AGB changes. This study provides valuable information for the relationships between forest AGB and climate as well as forest disturbance in subtropical zones.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:MDPI AG Funded by:EC | EURO4MEC| EURO4MSteffen Kothe; Elizabeth Good; André Obregón; Bodo Ahrens; Helga Nitsche;doi: 10.3390/rs5062943
In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG) SEVIRI (Spinning Enhanced Visible and Infrared Imager). The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP) station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2013Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5062943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2013Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5062943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Husam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; +2 AuthorsHusam Abdulrasool H. Al-Najjar; Biswajeet Pradhan; Bahareh Kalantar; Maher Ibrahim Sameen; M. Santosh; Abdullah Alamri;Landslide susceptibility modeling, an essential approach to mitigate natural disasters, has witnessed considerable improvement following advances in machine learning (ML) techniques. However, in most of the previous studies, the distribution of input data was assumed as being, and treated, as normal or Gaussian; this assumption is not always valid as ML is heavily dependent on the quality of the input data. Therefore, we examine the effectiveness of six feature transformations (minimax normalization (Std-X), logarithmic functions (Log-X), reciprocal function (Rec-X), power functions (Power-X), optimal features (Opt-X), and one-hot encoding (Ohe-X) over the 11conditioning factors (i.e., altitude, slope, aspect, curvature, distance to road, distance to lineament, distance to stream, terrain roughness index (TRI), normalized difference vegetation index (NDVI), land use, and vegetation density). We selected the frequent landslide-prone area in the Cameron Highlands in Malaysia as a case study to test this novel approach. These transformations were then assessed by three benchmark ML methods, namely extreme gradient boosting (XGB), logistic regression (LR), and artificial neural networks (ANN). The 10-fold cross-validation method was used for model evaluations. Our results suggest that using Ohe-X transformation over the ANN model considerably improved performance from 52.244 to 89.398 (37.154% improvement).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Wenxu Cao; Hang Xu; Zhiqiang Zhang;doi: 10.3390/rs14174198
Global climate change profoundly influences the patterns of vegetation growth. However, the disparities in vegetation responses induced by regional climate characteristics are generally weakened in large-scale studies. Meanwhile, distinct climatic drivers of vegetation growth result in the different reactions of different vegetation types to climate variability. Hence, it is an extraordinary challenge to detect and attribute vegetation growth changes. In this study, the spatiotemporal distribution and dynamic characteristics of climate change effects on vegetation growth from 2000 to 2020 were investigated by the normalized difference vegetation index (NDVI) dataset during the growing season (April–October). Meanwhile, we further detected the climate-dominated factor between different vegetation types (i.e., forest, shrub, and grass) within the Chaohe watershed located in temperate northern China. The results revealed a continuous greening trend over the entire study period, despite slowing down since 2007 (p < 0.05). Growing-season precipitation (P) was identified as the dominant climatic factor of the greening trend (p < 0.05), and approximately 34.83% of the vegetated area exhibited a significant response to increasing P. However, continued warming-induced intensive evaporation demand caused the vegetation growth to slow down. Hereinto, the areas with a significantly positive response of forest growth to temperature decreased from 24.38% to 18.06% (p < 0.05). In addition, solar radiation (SW) corresponds to the vegetation trend in the watershed (p < 0.05), and the significantly positive SW-influenced areas increased from 9.24% and 2.64% to 11.78% and 3.37% in forests and shrubland, respectively (p < 0.05). Our findings highlight the nonlinearity of long-term vegetation growth trends with climate variation and the cause of this divergence, which provide vital insights into forecasting vegetation responses to future climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Kang Liang; Guozhen Yan;doi: 10.3390/rs9101019
Lakes in arid and semi-arid regions have an irreplaceable and important role in the local environment and wildlife habitat protection. Relict Gull (Larus relictus), which is listed as a “vulnerable” bird species in the IUCN Red List, uses only islands in lakes for habitat. The habitat with the largest colonies in Hongjian Lake (HL), which is located in Shaanxi Province in China, has been severely threatened by persistent lake shrinkage, yet the variations in the area of the lake and the islands are poorly understood due to a lack of in situ observations. In this study, using the Modified Normalized Difference Water Index, 336 Landsat remote sensing images from 1988–2015 were used to extract the monthly HL water area and lake island area, and the driving factors were investigated by correlation analysis. The results show that the lake area during 1988–2015 exhibited large fluctuations and an overall downward trend of −0.94 km2/year, and that the lake area ranged from 55.02 km2 in 1997 to 30.90 km2 in 2015. The cumulative anomaly analysis diagnosed the lake variations as two sub-periods with different characteristics and leading driving factors. The average and change trend were 52.88 and 0.21 km2/year during 1988–1998 and 38.85 and −1.04 km2/year during 1999–2015, respectively. During 1988–1998, the relatively high precipitation, low evapotranspiration, and low levels of human activity resulted in a weak increase in the area of HL. However, in 1999–2015, the more severe human activity as well as climate warming resulted in a fast decrease in the area of HL. The variations in lake island area were dependent on the area of HL, which ranged from 0.02 km2 to 0.22 km2. As the lake size declined, the islands successively outcropped in the form of the four island zones, and the two zones located in Northwest and South of HL were the most important habitats for Relict Gull. The formation of these island zones can provide enough space for Relict Gull breeding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9101019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9101019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Jie Pei; Li Wang; Xiaoyue Wang; Zheng Niu; Maggi Kelly; Xiao-Peng Song; Ni Huang; Jing Geng; Haifeng Tian; Yang Yu; Shiguang Xu; Lei Wang; Qing Ying; Jianhua Cao;doi: 10.3390/rs11172044
Since the implementation of China’s afforestation and conservation projects during recent decades, an increasing number of studies have reported greening trends in the karst regions of southwest China using coarse-resolution satellite imagery, but small-scale changes in the heterogenous landscapes remain largely unknown. Focusing on two typical karst regions in the Nandong and Xiaojiang watersheds in Yunnan province, we processed 2,497 Landsat scenes from 1988 to 2016 using the Google Earth Engine cloud platform and analyzed vegetation trends and associated drivers. We found that both watersheds experienced significant increasing trends in annual fractional vegetation cover, at a rate of 0.0027 year−1 and 0.0020 year−1, respectively. Notably, the greening trends have been intensifying during the conservation period (2001–2016) even under unfavorable climate conditions. Human-induced ecological engineering was the primary factor for the increased greenness. Moreover, vegetation change responded differently to variations in topographic gradients and lithological types. Relatively more vegetation recovery was found in regions with moderate slopes and elevation, and pure limestone, limestone and dolomite interbedded layer as well as impure carbonate rocks than non-karst rocks. Partial correlation analysis of vegetation trends and temperature and precipitation trends suggested that climate change played a minor role in vegetation recovery. Our findings contribute to an improved understanding of the mechanisms behind vegetation changes in karst areas and may provide scientific supports for local afforestation and conservation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11172044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Authors: Fazlullah Akhtar; Usman Awan; Bernhard Tischbein; Umar Liaqat;The Kabul River basin (KRB) of Afghanistan, a lifeline of around 10 million people, has multiplicity of governance, management, and development-related challenges leading to inequity, inadequacy, and unreliability of irrigation water distribution. Prior to any uplifting intervention, there is a need to evaluate the performance of irrigation system on a long term basis to identify the existing bottlenecks. Although there are several indicators available for the performance evaluation of the irrigation schemes, we used the coefficient of variation (CV) of actual evapotranspiration (ETa) in space (basin, sub-basin, and provincial level), relative evapotranspiration (RET), and temporal CV of RET, to assess the equity, adequacy, and reliability of water distribution, respectively, from 2003 to 2013. The ETa was estimated through a surface energy balance system (SEBS) algorithm and the ETa estimates were validated using the advection aridity (AA) method with a R2 value of 0.81 and 0.77 at Nawabad and Sultanpur stations, respectively. The global land data assimilation system (GLDAS) and moderate-resolution imaging spectroradiometer (MODIS) products were used as main inputs to the SEBS. Results show that the mean seasonal sub-based RET values during summer (May–September) (0.37 ± 0.06) and winter (October–April) (0.40 ± 0.08) are below the target values (RET ≥ 0.75) during 2003–2013. The CV of the mean ETa, within sub-basins and provinces for the entire study period, has an equitable distribution of water from October–January (0.09 ± 0.04), whereas the highest inequity (0.24 ± 0.08) in water distribution is during early summer. The range of the CV of the mean ETa (0.04–0.06) on a monthly and seasonal basis shows the unreliability of water supplies in several provinces or sub-basins. The analysis of the temporal CV of mean RET highlights the unreliable water supplies across the entire basin. The maximum ETa during the study period was estimated for the Shamal sub-basin (552 ± 43 mm) while among the provinces, Kunar experienced the highest ETa (544 ± 39 mm). This study highlights the dire need for interventions to improve the irrigation performance in time and space. The proposed methodology can be used as a framework for monitoring and implementing water distribution plans in future.
Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs10060972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs10060972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu