Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,321 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 12. Responsible consumption
  • 6. Clean water
  • EU
  • IT
  • GB
  • ES
  • English

  • Authors: Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; +17 Authors

    The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Keane, J.B.; Toet, S.; Weslien, P.; Klemedtsson, L.; +2 Authors

    Near continuous methane and CO2 fluxes measured along a transect on an ombrotrophic fen in Southern Sweden from August 2017-September 2019 using an automated greenhouse gas flux platform SkyLine2D. The impacts of drought (in 2018 the mire experienced drought conditions) and different vegetation types (sedge, heather, sphagnum or open water; 6 replicated for each) on the fluxes were determined. Fluxes were measured within collars of 20-cm diameter, 4-min at each collar. CH4 and CO2 fluxes were detected using a Licor infrared gas analyser (IRGA, LI-8100, Licor, NE, USA) to measure CO2 and a cavity ringdown laser (CRD, LGR U-GGA-91, Los Gatos Research, CA USA) to measure both CO2 and CH4. Fluxes of CO2 and CH4 were calculated using linear regression; a deadband of at least 20 seconds was allowed for the chamber headspace to mix and a window of 90 seconds was used for CO2 and 240 seconds used for CH4. Fluxes were adjusted for area, air temperature and gas volume. Further adjustment was made to the CO2 fluxes during daylight hours based upon the light response curve to account for attenuation of light by the chamber material, after. All data manipulation and analyses were carried out using SAS 9.4 (SAS Institute, CA 161 USA). GHG flux data (for both CO2 and CH4) were quality controlled in the first instance using the R2 statistic of the CO2 flux measurement, with values < 0.9 discarded. Measurements passing this threshold were then assessed using the output statistics from the regression calculation of CH4 fluxes, where regressions with a P value < 0.05 were accepted, while those that did not were treated as zero flux. Data outliers were defined as those ± 1.96 standard errors of the mean flux value for each collar and were excluded from the analyses. Data were further filtered to account for overestimation of fluxes during still atmospheric night-time conditions. Using the procedure fluxes where the mean CO2 concentration for the 20 second period before and after chamber closure dropped by more than 25 ppm where discounted. Net ecosystem exchange and methane fluxes were measured from a hemi-boreal ombrotrophic fen in Southern Sweden. An automated chamber system, SkyLine2D, was used to measure the fluxes near-continuously from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, to assess how these different ecotypes would respond to drought. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; +13 Authors

    Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3K
    visibilityviews3,130
    downloaddownloads1,221
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This dataset contains time series of reservoir releases (including any spills), evaporation loss, and rule curves for the Pong and Bhakra reservoirs, India. {"references": ["https://doi.org/10.3390/w11071413", "https://doi.org/10.1016/j.scitotenv.2019.06.021"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    4TU.ResearchData | science.engineering.design
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility41
    visibilityviews41
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      4TU.ResearchData | science.engineering.design
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mason, Victoria; Burden, Annette; Epstein, Graham; Jupe, Lucy; +2 Authors

    # Data from: Blue Carbon Benefits from Global Saltmarsh Restoration [https://doi.org/10.5061/dryad.pc866t1vp](https://doi.org/10.5061/dryad.pc866t1vp) This README file was generated on 12th September 2023 by Victoria Mason. **Title of Dataset:** Blue carbon benefits from global saltmarsh restoration. **Author information:** * Victoria G. Mason, Bangor University/Royal Netherlands Institute for Sea Research (NIOZ), victoria.mason@nioz.nl (*Corresponding author*) * Annette Burden, UK Centre for Ecology & Hydrology * Graham Epstein, University of Exeter/University of Victoria * Lucy L. Jupe, Wildfowl & Wetlands Trust * Kevin A. Wood, Wildfowl & Wetlands Trust * Martin W. Skov, Bangor University **Summary of dataset:** These data include all data which were extracted or derived from relevant studies on global saltmarsh carbon storage and greenhouse gas flux. Data were obtained following screening of 29,182 peer reviewed published studies for relevant data, which were then extracted from 431 studies via text, tables and figures. We then used a meta-analysis to assess drivers of variation in global saltmarsh and greenhouse gas flux. * Date of literature search: 21st January 2022. * Date of data extraction: February - March 2022 * Literature search conducted via: Scopus + Web of Science ## Description of the data and file structure The contents of these data include: * **Full dataset (Aug2023\_GlobalCarbonReview\_FullDataset.xls):** All data extracted from 431 relevant studies and used in analysis. This includes a title page, metadata (with descriptions of column headers) and the full dataset. Response variables included: * Carbon stock * Percentage organic carbon * Bulk density * Sediment accretion rate * Carbon accumulation rate * Carbon dioxide flux * Methane flux * Nitrous oxide flux **\- Data on each included study \(Aug2023\_GlobalCarbonReview\_IncludedStudies\.xls\):** List of each study included in the final analysis, and its metadata. This includes a title page, metadata (with descriptions of column headers) and the dataset. All data include standard deviation (SD) and n (number of replicates) where provided by the original study, which were used to calculate Hedge's *g* effect sizes reported in the subsequent study. | Frequently used abbreviations: | | | ------------------------------ | --- | | C | carbon | | OC | organic carbon | | GHG | greenhouse gas | | bd | bulk density (g cm-3 dry sediment) | | Y/N | yes/no | | ref | reference | | lat | latitude | | long | longitude | | rest | restoration | | prec | precipitation | | sal | salinity | | acc | accretion | | resp | respiration | | SR | soil respiration (appears for CO2 flux) | | ER | ecosystem respiration (appears for CO2 flux) | | n | number of samples included in mean/standard deviation | | sd | standard deviation | All abbreviations used are outlined in the ‘Metadata’ worksheet of .xls files. **Data specific information for Aug2023\_GlobalCarbonReview\_FullDataset.xls:** Number of variables: 88 Number of cases/rows: 2055 Variables included: See 'Metadata' sheet **Data specific information for** **Aug2023\_GlobalCarbonReview\_IncludedStudies.xls:** Number of variables: 47 Number of cases/rows: 431 Variables included: See 'Metadata' sheet **Empty cells:** Cells are empty where data on that variable were not provided by the original study from which they were extracted. For example, where a study provided data on carbon stock variables, but not greenhouse gas flux. For further details, see the 'Metadata' sheets of each file. ## Sharing/Access information These data are available via Dryad, and described in ‘Blue Carbon Benefits from Global Saltmarsh Restoration’, in Global Change Biology. **DOI:** 10.1111/gcb.16943 Data were extracted from 431 published peer reviewed articles, the details of which can be found in the attached datasheets. Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of ‘blue’ carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41–2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93–207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% global-energy-related CO2 emissions – a substantial amount, considering marshes represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern costs of the USA and Australia being particular hotspots for carbon storage. Whilst the study reveals paucity of data for some variables and continents, suggesting a need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: French, Charles; Hunt, Chris O; Grima, Reuben; McLaughlin, Rowan; +2 Authors

    The ERC-funded FRAGSUS Project (Fragility and sustainability in small island environments: adaptation, cultural change and collapse in prehistory, 2013–18), led by Caroline Malone (Queens University Belfast) has explored issues of environmental fragility and Neolithic social resilience and sustainability during the Holocene period in the Maltese Islands. This, the first volume of three, presents the palaeo-environmental story of early Maltese landscapes. The project employed a programme of high-resolution chronological and stratigraphic investigations of the valley systems on Malta and Gozo. Buried deposits extracted through coring and geoarchaeological study yielded rich and chronologically controlled data that allow an important new understanding of environmental change in the islands. The study combined AMS radiocarbon and OSL chronologies with detailed palynological, molluscan and geoarchaeological analyses. These enable environmental reconstruction of prehistoric landscapes and the changing resources exploited by the islanders between the seventh and second millennia bc. The interdisciplinary studies combined with excavated economic and environmental materials from archaeological sites allows Temple landscapes to examine the dramatic and damaging impacts made by the first farming communities on the islands’ soil and resources. The project reveals the remarkable resilience of the soil-vegetational system of the island landscapes, as well as the adaptations made by Neolithic communities to harness their productivity, in the face of climatic change and inexorable soil erosion. Neolithic people evidently understood how to maintain soil fertility and cope with the inherently unstable changing landscapes of Malta. In contrast, second millennium bc Bronze Age societies failed to adapt effectively to the long-term aridifying trend so clearly highlighted in the soil and vegetation record. This failure led to severe and irreversible erosion and very different and short-lived socio-economic systems across the Maltese islands.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Book . 2020
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility399
    visibilityviews399
    downloaddownloads553
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Book . 2020
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Perryman, Sarah; Scott, Tony; Hall, Chris;

    Daily rainfall is measured as the total (mm) over the 24-hour period 0900 to 0900 GMT. It includes all precipitation - snow, rain, mist and fog. Rainfall was first recorded at Rothamsted in March 1853, using a copper funnel rain gauge (5 inch / 12.7 cm diameter) and measured using a graduated cylinder. Since 2004 it has been measured using an electronic tipping bucket rain gauge (10 inch / 25.4cm diameter), ARG100, calibrated to tip at 0.2mm (which has since become the minimum amount of rain that can be recorded). The rain gauge is placed within a 30cm deep 1.5m radius turf wall, retained by brick, to reduce wind eddies that may potentially blow rain out of the gauges. Data were collected daily manually until 2004 and since then by Automatic Weather Station using a standard protocol. There are differences in the capture rate between the two gauges, see Rainfall for further information. The monthly summary data contained in this spreadsheet are derived from daily data measured at Rothamsted Meteorological Station, Harpenden. Total monthly data is determined from daily data using Genstat 19th Edition. Verification includes checks for instrument errors, for missing data and outliers. The original raw daily data is available, after registering, from the e-RA database. Please contact the e-RA Curators for an access password and further details. This dataset represents the mean monthly rainfall recorded at Rothamsted from October 1985 - September 2017 and is derived from continuous daily records measured at the site. Location: Rothamsted Meteorological Station, Harpenden, Hertfordshire, England 51.82 N 0.37 W 128 m asl.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.23637/rm...
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.23637/rm...
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Greenfield, L.M.; Graf, M.; Rengaraj, S.; Bargiela, R.; +4 Authors

    Data was either measured in situ in the field (N2O flux, soil moisture, rainfall and air temperature) or samples were taken, processed, and analysed in the laboratory (soil pH, electrical conductivity (EC), ammonium, nitrate, microbial community composition and crop yield). N2O flux data was measured on a mobile gas chromatograph (GC) system and integrated to obtain peak areas on Peak490Win10Canabis programme. The times, peak areas and sample ID were then exported into a .CHR file and imported into Flux.NET.3.3 which calculated N2O flux as an output in Excel which was exported as .csv file for deposit in EIDC. N2O flux was used to calculate cumulative N2O flux using trapezoidal integration in Excel and saved in a separate .csv file for deposit in EIDC. Soil moisture was measured on Accilmas with data stored as a .csv on a DataSnap that was downloaded and sorted by treatment and saved as a .csv file. Rainfall and air temperature were downloaded from the weather station as .csv file. Soil pH and EC were recorded manually into a notebook and input into an Excel spreadsheet and exported as a .csv file. Soil ammonium and nitrate content was measured using the microplate method using a programme called Gen5. Date was exported into an Excel spreadsheet and absorbance units used to calculate ammonium/nitrate content in milligrams per kilogram using a calibration curve from a set of standards in an Excel spreadsheet. This was exported as a .csv file. Crop growth data was recorded in the field in a notebook and input into an Excel spreadsheet and exported as a .csv file. Crop yield was recorded in a notebook and input into an Excel spreadsheet and exported as a .csv file. Microbial community composition was measured using 16S gene sequencing on an Illumina MiSeq. This generated raw sequencing reads which were processed using Python and filtered using QIIME v1.3.1. creating asv.count.table.csv of counts of each Amplicon Sequence Variants (ASVs) per sample and taxa.table.csv of the taxonomic lineage for each ASVs. This dataset contains field data on nitrous oxide (N2O) emissions, microbial community composition, crop yield and growth and soil biochemical properties. The field trial consisted of three different treatments of control, conventional microplastic addition and biodegradable microplastic addition where winter barley was grown. The data presented are from field and laboratory measurements. Data was collected by the data authors. The field trial was carried out from September 2020 to July 2021 at Henfaes Field Centre, UK. Research was funded through NERC Grant NE/V005871/1. Do agricultural microplastics undermine food security and sustainable development in developing countries?

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramirez F; Rodriguez C; Seoane J; Figuerola J; +1 Authors

    Global warming and direct anthropogenic impacts, such as water extraction, are largely affecting water budgets in Mediterranean wetlands, thereby increasing wetland salinities and isolation, and decreasing water depths and hydroperiods (duration of the inundation period). These wetland features are key elements structuring waterbird communities. However, the ultimate and net consequences of these dynamic conditions on waterbird assemblages are largely unknown. We combined a regular sampling on waterbird presence through the 2008 annual cycle with in-situ data on these relevant environmental predictors of waterbird distribution to model habitat selection for 69 individual species in a typical Mediterranean wetland network in south-western Spain. Species association with environmental features were subsequently used to predict changes in habitat suitability for each species under three climate change scenarios (encompassing changes in environment that ranged from 10% to 50% change as predicted by climatic models). Waterbirds distributed themselves unevenly throughout environmental gradients and water salinity was the most important gradient structuring the distribution of the community. Environmental suitability for the guilds of diving birds and vegetation gleaners will be reduced according to future climate scenarios, while most small wading birds will benefit from changing conditions. Resident species and those that breed in this wetland network will be also more impacted than those using this area for wintering or stopover. We provide here a tool that can be used in a horizon-scanning framework to identify emerging issues on waterbird conservation and to anticipate suitable management actions : Datasets as supporting information to article “How will climate change affect endangered Mediterranean waterbirds?” to be published in PLOS ONE. Address questions to Francisco Ramírez: ramirez@ub.edu

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital.CSICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital.CSIC
    Dataset . 2017
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioStudies
    Dataset . 2018
    Data sources: BioStudies
    Digital.CSIC
    Dataset . 2017 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility85
    visibilityviews85
    downloaddownloads13
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital.CSICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital.CSIC
      Dataset . 2017
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioStudies
      Dataset . 2018
      Data sources: BioStudies
      Digital.CSIC
      Dataset . 2017 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; +10 Authors

    In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.22004/ag...
    Other literature type . 2011
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.22004/ag...
      Other literature type . 2011
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,321 Research products
  • Authors: Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; +17 Authors

    The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Keane, J.B.; Toet, S.; Weslien, P.; Klemedtsson, L.; +2 Authors

    Near continuous methane and CO2 fluxes measured along a transect on an ombrotrophic fen in Southern Sweden from August 2017-September 2019 using an automated greenhouse gas flux platform SkyLine2D. The impacts of drought (in 2018 the mire experienced drought conditions) and different vegetation types (sedge, heather, sphagnum or open water; 6 replicated for each) on the fluxes were determined. Fluxes were measured within collars of 20-cm diameter, 4-min at each collar. CH4 and CO2 fluxes were detected using a Licor infrared gas analyser (IRGA, LI-8100, Licor, NE, USA) to measure CO2 and a cavity ringdown laser (CRD, LGR U-GGA-91, Los Gatos Research, CA USA) to measure both CO2 and CH4. Fluxes of CO2 and CH4 were calculated using linear regression; a deadband of at least 20 seconds was allowed for the chamber headspace to mix and a window of 90 seconds was used for CO2 and 240 seconds used for CH4. Fluxes were adjusted for area, air temperature and gas volume. Further adjustment was made to the CO2 fluxes during daylight hours based upon the light response curve to account for attenuation of light by the chamber material, after. All data manipulation and analyses were carried out using SAS 9.4 (SAS Institute, CA 161 USA). GHG flux data (for both CO2 and CH4) were quality controlled in the first instance using the R2 statistic of the CO2 flux measurement, with values < 0.9 discarded. Measurements passing this threshold were then assessed using the output statistics from the regression calculation of CH4 fluxes, where regressions with a P value < 0.05 were accepted, while those that did not were treated as zero flux. Data outliers were defined as those ± 1.96 standard errors of the mean flux value for each collar and were excluded from the analyses. Data were further filtered to account for overestimation of fluxes during still atmospheric night-time conditions. Using the procedure fluxes where the mean CO2 concentration for the 20 second period before and after chamber closure dropped by more than 25 ppm where discounted. Net ecosystem exchange and methane fluxes were measured from a hemi-boreal ombrotrophic fen in Southern Sweden. An automated chamber system, SkyLine2D, was used to measure the fluxes near-continuously from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, to assess how these different ecotypes would respond to drought. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; +13 Authors

    Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3K
    visibilityviews3,130
    downloaddownloads1,221
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This dataset contains time series of reservoir releases (including any spills), evaporation loss, and rule curves for the Pong and Bhakra reservoirs, India. {"references": ["https://doi.org/10.3390/w11071413", "https://doi.org/10.1016/j.scitotenv.2019.06.021"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    4TU.ResearchData | science.engineering.design
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility41
    visibilityviews41
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      4TU.ResearchData | science.engineering.design
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mason, Victoria; Burden, Annette; Epstein, Graham; Jupe, Lucy; +2 Authors

    # Data from: Blue Carbon Benefits from Global Saltmarsh Restoration [https://doi.org/10.5061/dryad.pc866t1vp](https://doi.org/10.5061/dryad.pc866t1vp) This README file was generated on 12th September 2023 by Victoria Mason. **Title of Dataset:** Blue carbon benefits from global saltmarsh restoration. **Author information:** * Victoria G. Mason, Bangor University/Royal Netherlands Institute for Sea Research (NIOZ), victoria.mason@nioz.nl (*Corresponding author*) * Annette Burden, UK Centre for Ecology & Hydrology * Graham Epstein, University of Exeter/University of Victoria * Lucy L. Jupe, Wildfowl & Wetlands Trust * Kevin A. Wood, Wildfowl & Wetlands Trust * Martin W. Skov, Bangor University **Summary of dataset:** These data include all data which were extracted or derived from relevant studies on global saltmarsh carbon storage and greenhouse gas flux. Data were obtained following screening of 29,182 peer reviewed published studies for relevant data, which were then extracted from 431 studies via text, tables and figures. We then used a meta-analysis to assess drivers of variation in global saltmarsh and greenhouse gas flux. * Date of literature search: 21st January 2022. * Date of data extraction: February - March 2022 * Literature search conducted via: Scopus + Web of Science ## Description of the data and file structure The contents of these data include: * **Full dataset (Aug2023\_GlobalCarbonReview\_FullDataset.xls):** All data extracted from 431 relevant studies and used in analysis. This includes a title page, metadata (with descriptions of column headers) and the full dataset. Response variables included: * Carbon stock * Percentage organic carbon * Bulk density * Sediment accretion rate * Carbon accumulation rate * Carbon dioxide flux * Methane flux * Nitrous oxide flux **\- Data on each included study \(Aug2023\_GlobalCarbonReview\_IncludedStudies\.xls\):** List of each study included in the final analysis, and its metadata. This includes a title page, metadata (with descriptions of column headers) and the dataset. All data include standard deviation (SD) and n (number of replicates) where provided by the original study, which were used to calculate Hedge's *g* effect sizes reported in the subsequent study. | Frequently used abbreviations: | | | ------------------------------ | --- | | C | carbon | | OC | organic carbon | | GHG | greenhouse gas | | bd | bulk density (g cm-3 dry sediment) | | Y/N | yes/no | | ref | reference | | lat | latitude | | long | longitude | | rest | restoration | | prec | precipitation | | sal | salinity | | acc | accretion | | resp | respiration | | SR | soil respiration (appears for CO2 flux) | | ER | ecosystem respiration (appears for CO2 flux) | | n | number of samples included in mean/standard deviation | | sd | standard deviation | All abbreviations used are outlined in the ‘Metadata’ worksheet of .xls files. **Data specific information for Aug2023\_GlobalCarbonReview\_FullDataset.xls:** Number of variables: 88 Number of cases/rows: 2055 Variables included: See 'Metadata' sheet **Data specific information for** **Aug2023\_GlobalCarbonReview\_IncludedStudies.xls:** Number of variables: 47 Number of cases/rows: 431 Variables included: See 'Metadata' sheet **Empty cells:** Cells are empty where data on that variable were not provided by the original study from which they were extracted. For example, where a study provided data on carbon stock variables, but not greenhouse gas flux. For further details, see the 'Metadata' sheets of each file. ## Sharing/Access information These data are available via Dryad, and described in ‘Blue Carbon Benefits from Global Saltmarsh Restoration’, in Global Change Biology. **DOI:** 10.1111/gcb.16943 Data were extracted from 431 published peer reviewed articles, the details of which can be found in the attached datasheets. Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of ‘blue’ carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41–2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93–207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% global-energy-related CO2 emissions – a substantial amount, considering marshes represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern costs of the USA and Australia being particular hotspots for carbon storage. Whilst the study reveals paucity of data for some variables and continents, suggesting a need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: French, Charles; Hunt, Chris O; Grima, Reuben; McLaughlin, Rowan; +2 Authors

    The ERC-funded FRAGSUS Project (Fragility and sustainability in small island environments: adaptation, cultural change and collapse in prehistory, 2013–18), led by Caroline Malone (Queens University Belfast) has explored issues of environmental fragility and Neolithic social resilience and sustainability during the Holocene period in the Maltese Islands. This, the first volume of three, presents the palaeo-environmental story of early Maltese landscapes. The project employed a programme of high-resolution chronological and stratigraphic investigations of the valley systems on Malta and Gozo. Buried deposits extracted through coring and geoarchaeological study yielded rich and chronologically controlled data that allow an important new understanding of environmental change in the islands. The study combined AMS radiocarbon and OSL chronologies with detailed palynological, molluscan and geoarchaeological analyses. These enable environmental reconstruction of prehistoric landscapes and the changing resources exploited by the islanders between the seventh and second millennia bc. The interdisciplinary studies combined with excavated economic and environmental materials from archaeological sites allows Temple landscapes to examine the dramatic and damaging impacts made by the first farming communities on the islands’ soil and resources. The project reveals the remarkable resilience of the soil-vegetational system of the island landscapes, as well as the adaptations made by Neolithic communities to harness their productivity, in the face of climatic change and inexorable soil erosion. Neolithic people evidently understood how to maintain soil fertility and cope with the inherently unstable changing landscapes of Malta. In contrast, second millennium bc Bronze Age societies failed to adapt effectively to the long-term aridifying trend so clearly highlighted in the soil and vegetation record. This failure led to severe and irreversible erosion and very different and short-lived socio-economic systems across the Maltese islands.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Book . 2020
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility399
    visibilityviews399
    downloaddownloads553
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Book . 2020
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Perryman, Sarah; Scott, Tony; Hall, Chris;

    Daily rainfall is measured as the total (mm) over the 24-hour period 0900 to 0900 GMT. It includes all precipitation - snow, rain, mist and fog. Rainfall was first recorded at Rothamsted in March 1853, using a copper funnel rain gauge (5 inch / 12.7 cm diameter) and measured using a graduated cylinder. Since 2004 it has been measured using an electronic tipping bucket rain gauge (10 inch / 25.4cm diameter), ARG100, calibrated to tip at 0.2mm (which has since become the minimum amount of rain that can be recorded). The rain gauge is placed within a 30cm deep 1.5m radius turf wall, retained by brick, to reduce wind eddies that may potentially blow rain out of the gauges. Data were collected daily manually until 2004 and since then by Automatic Weather Station using a standard protocol. There are differences in the capture rate between the two gauges, see Rainfall for further information. The monthly summary data contained in this spreadsheet are derived from daily data measured at Rothamsted Meteorological Station, Harpenden. Total monthly data is determined from daily data using Genstat 19th Edition. Verification includes checks for instrument errors, for missing data and outliers. The original raw daily data is available, after registering, from the e-RA database. Please contact the e-RA Curators for an access password and further details. This dataset represents the mean monthly rainfall recorded at Rothamsted from October 1985 - September 2017 and is derived from continuous daily records measured at the site. Location: Rothamsted Meteorological Station, Harpenden, Hertfordshire, England 51.82 N 0.37 W 128 m asl.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.23637/rm...
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.23637/rm...
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Greenfield, L.M.; Graf, M.; Rengaraj, S.; Bargiela, R.; +4 Authors

    Data was either measured in situ in the field (N2O flux, soil moisture, rainfall and air temperature) or samples were taken, processed, and analysed in the laboratory (soil pH, electrical conductivity (EC), ammonium, nitrate, microbial community composition and crop yield). N2O flux data was measured on a mobile gas chromatograph (GC) system and integrated to obtain peak areas on Peak490Win10Canabis programme. The times, peak areas and sample ID were then exported into a .CHR file and imported into Flux.NET.3.3 which calculated N2O flux as an output in Excel which was exported as .csv file for deposit in EIDC. N2O flux was used to calculate cumulative N2O flux using trapezoidal integration in Excel and saved in a separate .csv file for deposit in EIDC. Soil moisture was measured on Accilmas with data stored as a .csv on a DataSnap that was downloaded and sorted by treatment and saved as a .csv file. Rainfall and air temperature were downloaded from the weather station as .csv file. Soil pH and EC were recorded manually into a notebook and input into an Excel spreadsheet and exported as a .csv file. Soil ammonium and nitrate content was measured using the microplate method using a programme called Gen5. Date was exported into an Excel spreadsheet and absorbance units used to calculate ammonium/nitrate content in milligrams per kilogram using a calibration curve from a set of standards in an Excel spreadsheet. This was exported as a .csv file. Crop growth data was recorded in the field in a notebook and input into an Excel spreadsheet and exported as a .csv file. Crop yield was recorded in a notebook and input into an Excel spreadsheet and exported as a .csv file. Microbial community composition was measured using 16S gene sequencing on an Illumina MiSeq. This generated raw sequencing reads which were processed using Python and filtered using QIIME v1.3.1. creating asv.count.table.csv of counts of each Amplicon Sequence Variants (ASVs) per sample and taxa.table.csv of the taxonomic lineage for each ASVs. This dataset contains field data on nitrous oxide (N2O) emissions, microbial community composition, crop yield and growth and soil biochemical properties. The field trial consisted of three different treatments of control, conventional microplastic addition and biodegradable microplastic addition where winter barley was grown. The data presented are from field and laboratory measurements. Data was collected by the data authors. The field trial was carried out from September 2020 to July 2021 at Henfaes Field Centre, UK. Research was funded through NERC Grant NE/V005871/1. Do agricultural microplastics undermine food security and sustainable development in developing countries?

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramirez F; Rodriguez C; Seoane J; Figuerola J; +1 Authors

    Global warming and direct anthropogenic impacts, such as water extraction, are largely affecting water budgets in Mediterranean wetlands, thereby increasing wetland salinities and isolation, and decreasing water depths and hydroperiods (duration of the inundation period). These wetland features are key elements structuring waterbird communities. However, the ultimate and net consequences of these dynamic conditions on waterbird assemblages are largely unknown. We combined a regular sampling on waterbird presence through the 2008 annual cycle with in-situ data on these relevant environmental predictors of waterbird distribution to model habitat selection for 69 individual species in a typical Mediterranean wetland network in south-western Spain. Species association with environmental features were subsequently used to predict changes in habitat suitability for each species under three climate change scenarios (encompassing changes in environment that ranged from 10% to 50% change as predicted by climatic models). Waterbirds distributed themselves unevenly throughout environmental gradients and water salinity was the most important gradient structuring the distribution of the community. Environmental suitability for the guilds of diving birds and vegetation gleaners will be reduced according to future climate scenarios, while most small wading birds will benefit from changing conditions. Resident species and those that breed in this wetland network will be also more impacted than those using this area for wintering or stopover. We provide here a tool that can be used in a horizon-scanning framework to identify emerging issues on waterbird conservation and to anticipate suitable management actions : Datasets as supporting information to article “How will climate change affect endangered Mediterranean waterbirds?” to be published in PLOS ONE. Address questions to Francisco Ramírez: ramirez@ub.edu

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital.CSICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital.CSIC
    Dataset . 2017
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioStudies
    Dataset . 2018
    Data sources: BioStudies
    Digital.CSIC
    Dataset . 2017 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility85
    visibilityviews85
    downloaddownloads13
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital.CSICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital.CSIC
      Dataset . 2017
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioStudies
      Dataset . 2018
      Data sources: BioStudies
      Digital.CSIC
      Dataset . 2017 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; +10 Authors

    In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.22004/ag...
    Other literature type . 2011
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.22004/ag...
      Other literature type . 2011
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.