- home
- Advanced Search
Filters
Clear All- Energy Research
- IT
- English
- Energies
- Energy Research
- IT
- English
- Energies
description Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Riccardo E. Zich; Francesco Grimaccia; Marco Mussetta; Andrea Pirisi;Recently the technology development and increasing amounts of investment in renewables has led to a growing interest towards design and optimization of green energy systems. In this context, advanced Computational Intelligence (CI) techniques can be applied by engineers to several technical problems in order to find out the best structure and to improve efficiency in energy recovery. This research promises to give new impulse to using innovative unconventional renewable sources and to develop the so-called Energy Harvesting Devices (EHDs). In this paper, the optimization of a Tubular Permanent Magnet-Linear Generator for energy harvesting from vehicles to grid is presented. The optimization process is developed by means of hybrid evolutionary algorithms to reach the best overall system efficiency and the impact on the environment and transportation systems. Finally, an experimental validation of the designed EHD prototype is presented. 
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a9d1b80c9f03da2a4fa9f0b75627b6a0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a9d1b80c9f03da2a4fa9f0b75627b6a0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Riccardo E. Zich; Francesco Grimaccia; Marco Mussetta; Andrea Pirisi;Recently the technology development and increasing amounts of investment in renewables has led to a growing interest towards design and optimization of green energy systems. In this context, advanced Computational Intelligence (CI) techniques can be applied by engineers to several technical problems in order to find out the best structure and to improve efficiency in energy recovery. This research promises to give new impulse to using innovative unconventional renewable sources and to develop the so-called Energy Harvesting Devices (EHDs). In this paper, the optimization of a Tubular Permanent Magnet-Linear Generator for energy harvesting from vehicles to grid is presented. The optimization process is developed by means of hybrid evolutionary algorithms to reach the best overall system efficiency and the impact on the environment and transportation systems. Finally, an experimental validation of the designed EHD prototype is presented. 
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a9d1b80c9f03da2a4fa9f0b75627b6a0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a9d1b80c9f03da2a4fa9f0b75627b6a0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu