- home
- Advanced Search
- Energy Research
- Closed Access
- basic medicine
- US
- ES
- Energy Research
- Closed Access
- basic medicine
- US
- ES
description Publicationkeyboard_double_arrow_right Article 1997Publisher:Elsevier BV Ji Shen; Jacques Philippe; Joanne Carroll; Ka Wa Chan; Alokesh Duttaroy; Byron C. Yoburn; Billy Chen; Fatima Sehba;pmid: 9372204
In this study the effect of in vivo ethanol consumption on cyclic AMP (cAMP) and [D-Ala2,D-Leu5]enkephalin (DADLE) inhibition of forskolin-stimulated cAMP production was examined in mouse striatum. Effects of ethanol on striatal delta-opioid receptor (DOR) density and mRNA were also examined. Mice had unlimited access to 7% (v/v) ethanol alone or water for 1 or 7 days and were then sacrificed and striatum removed for analysis. There was no difference in basal cAMP formation between water and ethanol-treated mouse striatum following 7 day treatment, and a small, but statistically significant increase in basal cAMP in the ethanol group following 1 day treatment. Both 1 day and 7 day ethanol treatment did not significantly alter the percentage increase in cAMP following treatment with 10 microM forskolin. There was a significant effect of ethanol treatment on the maximum inhibitory effect of DADLE on forskolin-stimulated cAMP formation following both 1 and 7 day ethanol treatment. The DADLE IC50 was unaffected by ethanol treatment. Saturation binding studies ([3H]Deltorphin II) indicated no effect of ethanol on Bmax or Kd in striatum. Similarly, no difference between water and ethanol-treated was observed for DOR mRNA in striatum. These data indicate that ethanol consumption can alter opioid regulation of cAMP formation. However, this effect is not related to changes in any delta-opioid receptor parameters that were examined.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1993Publisher:Elsevier BV Authors: James M. Murphy; L. Lumeng; Robert B. Stewart;
G.J. Gatto; +1 AuthorsG.J. Gatto
G.J. Gatto in OpenAIREJames M. Murphy; L. Lumeng; Robert B. Stewart;
G.J. Gatto; Ting-Kai Li;G.J. Gatto
G.J. Gatto in OpenAIREpmid: 8095393
Rats of the selectively bred alcohol-preferring P and alcohol-nonpreferring NP lines were evaluated using three different behavioral measures of anxiety. Compared with NP rats, P rats (1) showed greater footshock-induced suppression of operant responding in an approach-avoidance conflict test; (2) spent less time in the open arms of an elevated plus maze; and (3) took longer in a passive avoidance test to step down from a platform to a grid floor where footshock was received 24 hours earlier. These findings indicate a greater degree of anxiety in the P than in the NP line of rats in these situations. Pretreatment with intraperitoneal (IP) ethanol (0.5-1.0 g/kg) injections produced anticonflict or anxiolytic effects in P but not in NP rats. However, the anticonflict effects of ethanol were small relative to those produced by chlordiazepoxide (CDP, 7.5 mg/kg) in both lines. The results demonstrate that selective breeding for divergent oral ethanol preference has produced associated differences between the P and NP lines of rats in behavioral tests of anxiety and in the anxiolytic effects of ethanol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.239 citations 239 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2002Publisher:Wiley Mayfield, RD; Lewohl, JM; Dodd, PR; Herlihy, A; Liu, JW; Harris, RA;AbstractAlcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin‐related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol‐responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.
Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.293 citations 293 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1995Publisher:Wiley Authors: Michael W. Miller;pmid: 8749817
Neurons in the rat hippocampal formation (the dentate gyrus and the hippocampus) are born over a protracted period, from gestational day (G) 15 into adulthood. Dentate gyral neurons born prenatally are generated from the ventricular zone, whereas those born postnatally are derived from a secondary proliferative zone, the intrahilar zone. In contrast, hippocampal pyramidal neurons are generated only prenatally from the ventricular zone. In the neocortex, ethanol depresses the proliferation of cells in the ventricular zone and stimulates the proliferation of cells in the secondary proliferative zone. The present study tests the hypotheses that prenatal treatment with ethanol has a different effect on the generation of dentate gyral neurons than does postnatal ethanol treatment, and that these differences are determined by the timing of the ethanol exposure relative to the period and site of neuronal generation.Rats were treated with ethanol between G6 and G21 or between postnatal day (P) 4 and P12. They were given an injection of [3H]thymidine on G15, G18, G21, P6, P9, or P12. Rats were killed on P30–P35. The tissue was processed by standard autoradiographic methods and assessed using rigorous stereological procedures. The total number of neurons and the density of radiolabeled neurons in both the dentate gyrus and the CA1 region of the hippocampus were determined.Prenatal ethanol treatment decreased the total number of neurons in the CA1 segment of the hippocampus and had little impact on neuronal number in the dentate gyrus. Likewise, the number of hippocampal and dentate gyral neurons generated daily was significantly lower in ethanol‐treated rats than in controls. Postnatal treatment to ethanol, however, significantly increased the total number of dentate gyral neurons and the density of neurons generated postnatally. These postnatal changes depended on the blood ethanol concentration (BEC). At moderate BECs, the total number of neurons in the dentate gyrus and the number of neurons generated was increased. At high BECs, however, neuronal number and neuronal generation were decreased. Postnatal ethanol treatment had no effect on the number of (total or radiolabeled) CA1 neurons.Thus, pre‐ and postnatal exposure to ethanol have opposite effects both on the number of neurons in the dentate gyrus and on the generation of neurons. These paradoxical effects likely result from three causes: the differential effects of ethanol on the two proliferative zones, the critical period of neuronal development, and the potentially opposite effects of moderate and high BEC.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1995 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.178 citations 178 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1995 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2001Publisher:Elsevier BV Authors: Jeffrey D. Hermes; Richard D. Cummings; David E. Moller; Gaochao Zhou;pmid: 11558997
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that mediate the effects of hormones and other endogenous ligands to regulate the expression of specific genes. NRs are clearly important targets for drug discovery. Ligand-dependent protein-protein interactions between NRs and NR coactivators (NRCoAs) are a critical step in regulation of transcription. Homogeneous time-resolved fluorescence (HTRF) energy transfer technology is sensitive, homogeneous, and nonradioactive. These characteristics make this approach attractive for developing high-throughput screening assays. The long-lived nature of the fluorescence of europium cryptate combined with a time delay in reading facilitates the homogeneous nature of the assay. Importantly, the introduction of lanthanides (with R0 values as great as 90 A in HTRF) make HTRF amenable to be used for protein-protein interactions. In this article we review, using peroxisome proliferator-activated receptor (PPAR)gamma as a model system, a novel approach for characterizing the ligand-dependent interaction between NR and NRCoA using HTRF technology and its potential uses in small-molecule screening, profiling selectivity of NR-NRCoA paired interactions, and profiling NR ligands as agonists versus partial agonists or antagonists.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1976Publisher:Elsevier BV Authors: Peter J. Syapin; R. Massarelli; E.P. Noble;pmid: 1256243
Abstract The effects of acute and chronic exposure to ethanol on the high affinity uptake of choline have been studied in glioblast and neuroblast cell lines. Acute treatment with 100 mM ethanol produced no changes in the rate of incorporation of (methyl- 14 C) choline. Chronic exposure to 100 mM ethanol led to an increase of choline uptake as a function of time reaching a maximum and then returning to control values. Differences were observed in the rate at which the various cells achieved this increase, with the cholinergic clone showing the earliest effect. A preliminary experiment on the distribution of (methyl- 3 H) choline in a glioblast cell line showed that the increase found in the high affinity uptake of choline might be related to an increase of 3 H incorporation into the phosphorylcholine pool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.29 citations 29 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1980Publisher:Elsevier BV Authors: Nirmala Anandam; Judith M. Stern; William Felegi;pmid: 7433484
The behavioral teratogenicity of ethanol was studied in a laboratory model of the fetal alcohol syndrome. Pregnant rats were placed in one of three groups: Ethanol (4 g ethanol/kg intubated twice daily; Purina Chow ad lib.); Sucrose (7 g sucrose/kg intubated instead of ethanol; Untreated (no intubations; Purina Chow ad lib.). Ethanol offspring did not differ from either control group in neonatal body weight or developmental measures. On Day 35, 2 female offspring per litter were tested for reactivity to acoustic startle stimuli. Activity was measured during the pre-stimulus foreperiod and during inter-stimulus intervals. Ethanol pups displayed heightened startle reactivity in the absence of hyperactivity or disrupted habituation. These data indicate that ethanol in utero produces hyperreactivity in the absence of morphological, body weight or developmental abberations.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 1980 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.47 citations 47 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 1980 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2014Publisher:Springer International Publishing pmid: 25427915
The molecular mechanisms of how alcohol and its metabolites induce cancer have been studied extensively. However, the mechanisms whereby chronic alcohol consumption affects antitumor immunity and host survival have largely been unexplored. We studied the effects of chronic alcohol consumption on the immune system and antitumor immunity in mice inoculated with B16BL6 melanoma and found that alcohol consumption activates the immune system leading to an increase in the proportion of IFN-γ-producing NK, NKT, and T cells in mice not injected with tumors. One outcome associated with enhanced IFN-γ activation is inhibition of melanoma lung metastasis. However, the anti-metastatic effects do not translate into increased survival of mice bearing subcutaneous tumors. Continued growth of the subcutaneous tumors and alcohol consumption accelerates the deterioration of the immune system, which is reflected in the following: (1) inhibition in the expansion of memory CD8+ T cells, (2) accelerated decay of Th1 cytokine-producing cells, (3) increased myeloid-derived suppressor cells, (4) compromised circulation of B cells and T cells, and (5) increased NKT cells that exhibit an IL-4 dominant cytokine profile, which is inhibitory to antitumor immunity. Taken together, the dynamic effects of alcohol consumption on antitumor immunity are in two opposing phases: the first phase associated with immune stimulation is tumor inhibitory and the second phase resulting from the interaction between the effects of alcohol and the tumor leads to immune inhibition and resultant tumor progression.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 1997Publisher:Springer Science and Business Media LLC Authors: Jean E. L. Arceneaux; Wenming Zhu; B. R. Byers; Lundrigan;pmid: 9243799
Mycobactericum smegmatis ATCC 607 became iron starved and did not reach maximum population density when grown at an iron concentration of 0.1 microM, or less. Iron deficient cells were more susceptible than iron replete cells to H2O2 killing; 9 mM H2O2 killed about 80% of the population of cultures grown at 0.05 microM iron, while about 25 mM H2O2 was required for similar killing of cultures grown at 1 or 20 microM iron. In response to H2O2, iron sufficient cells produced major oxidative stress proteins of molecular masses of 90, 75, 65, 62, and 43 kDa (the 75 and 65 kDa proteins were identified as DnaK and GroEL homologs, respectively). Iron deficient M. smegmatis did not upregulate the DnaK and GroEL proteins when stressed with H2O2. Both iron deficient and iron sufficient M. smegmatis produced (at 48 degrees C) major heat shock proteins of molecular masses of 90, 75 (DnaK), 65 (GroEL), 62, 43, and 16 kDa. The stress protein response induced by 2 M ethanol challenge was similar to the heat shock response except that ethanol induced a unique 55 kDa protein and the 16 kDa heat shock protein was not apparent. Induction of ethanol stress proteins was identical in high iron and low iron cells. All of the stress agents induced expression of a 62 kDa protein which may also be induced by iron insufficiency. The heat and ethanol shock responses of M. smegmatis were unchanged by iron deficiency; therefore, the absence of DnaK and GroEL from the response of iron starved M. smegmatis to H2O2 may be due to a specific defect (or alteration) of the oxidative stress response during iron starvation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.34 citations 34 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:
F P, Varodayan; A R, Pahng; T D, Davis;F P, Varodayan
F P, Varodayan in OpenAIRE
P, Gandhi; +8 AuthorsP, Gandhi
P, Gandhi in OpenAIRE
F P, Varodayan; A R, Pahng; T D, Davis;F P, Varodayan
F P, Varodayan in OpenAIRE
P, Gandhi; M, Bajo; M Q, Steinman; W B, Kiosses; Y A, Blednov; M D, Burkart; S, Edwards; A J, Roberts; M, Roberto;P, Gandhi
P, Gandhi in OpenAIRENeuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives. We exposed C57BL/6J male mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and conducted ex vivo electrophysiology and molecular analyses. We found that the IL-1 system regulates basal mPFC function through its actions at inhibitory synapses on prelimbic layer 2/3 pyramidal neurons. IL-1β can selectively recruit either neuroprotective (PI3K/Akt) or pro-inflammatory (MyD88/p38 MAPK) mechanisms to produce opposing synaptic effects. In ethanol naïve conditions, there was a strong PI3K/Akt bias leading to a disinhibition of pyramidal neurons. Ethanol dependence produced opposite IL-1 effects - enhanced local inhibition via a switch in IL-1β signaling to the canonical pro-inflammatory MyD88 pathway. Ethanol dependence also increased cellular IL-1β in the mPFC, while decreasing expression of downstream effectors (Akt, p38 MAPK). Thus, IL-1β may represent a key neural substrate in ethanol-induced cortical dysfunction. As the IL-1 receptor antagonist (kineret) is already FDA-approved for other diseases, this work underscores the high therapeutic potential of IL-1 signaling/neuroimmune-based treatments for AUD.
Brain Behavior and I... arrow_drop_down Brain Behavior and ImmunityArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Brain Behavior and I... arrow_drop_down Brain Behavior and ImmunityArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
