- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 11. Sustainability
- 12. Responsible consumption
- US
- ES
- Energy Research
- Open Access
- Open Source
- Embargo
- 11. Sustainability
- 12. Responsible consumption
- US
- ES
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Authors:Marcos G. Alberti;
Marcos G. Alberti
Marcos G. Alberti in OpenAIREJaime C. Gálvez;
Jaime C. Gálvez
Jaime C. Gálvez in OpenAIREAlejandro Enfedaque;
Ana Carmona; +2 AuthorsAlejandro Enfedaque
Alejandro Enfedaque in OpenAIREMarcos G. Alberti;
Marcos G. Alberti
Marcos G. Alberti in OpenAIREJaime C. Gálvez;
Jaime C. Gálvez
Jaime C. Gálvez in OpenAIREAlejandro Enfedaque;
Ana Carmona; Cristina Valverde; Gabriel Pardo;Alejandro Enfedaque
Alejandro Enfedaque in OpenAIREConstruction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2015Publisher:Elsevier BV Authors: Makena Coffman; Makena Coffman; John F. Yanagida; Junko Mochizuki;This article examines land-use, market and welfare implications of lignocellulosic bioethanol production in Hawaii to satisfy 10% and 20% of the State's gasoline demand in line with the State's ethanol blending mandate and Alternative Fuels Standard (AFS). A static computable general equilibrium (CGE) model is used to evaluate four alternative support mechanisms for bioethanol. Namely: (i) a federal blending tax credit, (ii) a long-term purchase contract, (iii) a state production subsidy financed by a lump-sum tax and (iv) a state production subsidy financed by an ad valorem gasoline tax. We find that because Hawaii-produced bioethanol is relatively costly, all scenarios are welfare reducing for Hawaii residents: estimated between -0.14% and -0.32%. Unsurprisingly, Hawaii.s economy and its residents fair best under the federal blending tax credit scenario, with a positive impact to gross state product of $49 million. Otherwise, impacts to gross state product are negative (up to -$63 million). We additionally find that Hawaii-based bioethanol is not likely to offer substantial greenhouse gas emissions savings in comparison to imported biofuel, and as such the policy cost per tonne of emissions displaced ranges between $130 to $2,100/tonne of CO2e. The policies serve to increase the value of agricultural lands, where we estimate that the value of pasture land could increase as much as 150% in the 20% AFS scenario.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 SpainPublisher:American Chemical Society (ACS) Authors:Susana Velasco-Lozano;
Susana Velasco-Lozano
Susana Velasco-Lozano in OpenAIREMato Knez;
Mato Knez
Mato Knez in OpenAIREFernando López-Gallego;
Fernando López-Gallego
Fernando López-Gallego in OpenAIREhandle: 10261/186689
Sustainable electricity generation is one of the major current challenges for our society. In this context, the evolution of nanomaterials and nanotechnologies has enabled the fabrication of microscopic devices to produce clean energy from a great variety of renewable sources. To expand the possibilities of energy generation, we have designed and fabricated bioinorganic generators capable to produce electricity by conversion of chemical energy from renewable fuel sources. Unlike traditional generators, the systems described herein produce mechanical energy through enzyme-driven gas production which generates vibration and pressure that are thus converted into electricity by the action of a piezoelectric component properly integrated into the device. Our generators are able to produce an electric ernergy from different renewable sources like glucose, ethanol, and amino acids, attaining energy outputs around 250 nJ cm–2 and reaching maximum open-circuit voltages of up to 1 V. In addition, the produced energy can be easily regulated by adjusting both enzyme and fuel concentration which can tune the electrical output according to the application. The systems described herein propose a new concept for self-sufficient energy harvesting that bridges biocatalysis and piezoelectricity, where the energy production is based on the piezoelectric effect triggered by enzymatic action rather than on the enzyme-driven electron transfer that governs biofuel cells. Although the electric output is too low yet to be considered an alternative for energy production, this technology opens the door to power small devices. We envision the utilization of this technology in such remote locations where mechanical energy is lacking but there are chemical energy reservoirs. We would like to acknowledge Marie-Curie Actions (NANOBIENER project), IKERBASQUE foundation for funding F.L.-G., and the support of COST Action CM1303 Systems Biocatalysis. We also acknowledge HERGAR foundation for the funding. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Kelly Klima;Meghan Doherty;
Jessica J. Hellmann; Jessica J. Hellmann;Meghan Doherty
Meghan Doherty in OpenAIREAbstractClimate change poses new and unique challenges that threaten lives and livelihoods. Given the increasing risks and looming uncertainty of climate change, increasing attention has been directed towards adaptation, or the strategies that enable humanity to persist and thrive through climate change the best it can. Though climate change is a global problem often discussed at the national scale, urban areas are increasingly seen as having a distinct role, and distinctive motivation and capacity, for adaptation. The 12 articles in this special issue explore ways of understanding and addressing climate change impacts on urban areas. Together they reveal young but rapidly growing scholarship on how to measure, and then overcome, challenges of climate change. Two key themes emerge in this issue: 1) that we must identify and then overcome current barriers to urban adaptation and 2) frameworks/metrics are necessary to identify and track adaptation progress in urban settings. Both of these themes point to the power of indicators and other quantitative information to inform priorities and illuminate the pathway forward for adaptation. As climate change is an entirely new challenge, careful measurement that enables investment by private and public parties is necessary to provide efficient outcomes that benefit the greatest number of people.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Science & PolicyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Ren, S; Luo, F; Lin, L; Hsu, SC; Li, XI;handle: 10397/101128
Abstract With promising benefits such as traffic emission reduction, traffic congestion alleviation, and parking problem solving, Electric Vehicle (EV)-sharing systems have attracted large attentions in recent years. Different from other business modes, customers in sharing economy systems are usually price sensitive. Therefore, it is possible to shift the usage of shared EVs through a well-designed Dynamic Pricing Scheme (DPS), with the objective of maximizing the system operator's total profit. In this study, we propose a novel DPS for a large-scale EV-sharing network to address the EV unbalancing issue and satisfy the vehicle-grid-integration (VGI) service based on accurate station-level demand prediction. The proposed DPS is formulated as a complex optimization problem, which includes two Price Adjustment Level (PAL) decision variables for every origin-destination pair of stations. The two PALs are employed to affect the EV-sharing demand and travel time between each station pair, respectively. Physical and operational constraints from both EV demand and VGI service aspects are also included in the proposed model. Two case study are conducted to validate the effectiveness of the proposed method.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 CanadaPublisher:MDPI AG Funded by:NSERCNSERCAuthors: Laadila, Mohamed Amine;Suresh, Gayatri;
Suresh, Gayatri
Suresh, Gayatri in OpenAIRERouissi, Tarek;
Kumar, Pratik; +5 AuthorsRouissi, Tarek
Rouissi, Tarek in OpenAIRELaadila, Mohamed Amine;Suresh, Gayatri;
Suresh, Gayatri
Suresh, Gayatri in OpenAIRERouissi, Tarek;
Kumar, Pratik; Brar, Satinder Kaur; Cheikh, Ridha Ben; Abokitse, Kofi; Galvez, Rosa; Jacob, Colin;Rouissi, Tarek
Rouissi, Tarek in OpenAIREdoi: 10.3390/en13041003
Recycled polylactic acid (PLAr) was reinforced with treated nanocellulosic hemp fibers for biocomposite fabrication. Cellulosic fibers were extracted from hemp fibers chemically and treated enzymatically. Treated nanocellulosic fibers (NCF) were analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Biocomposite fabrication was done with PLAr and three concentrations of treated NCF (0.1%, 0.25%, and 1% (v/v)) and then studied for thermal stability and mechanical properties. Increased thermal stability was observed with increasing NCF concentrations. The highest value for Young’s modulus was for PLAr + 0.25% (v/v) NCF (250.28 ± 5.47 MPa), which was significantly increased compared to PLAr (p = 0.022). There was a significant decrease in the tensile stress at break point for PLAr + 0.25% (v/v) NCF and PLAr + 1% (v/v) NCF as compared to control (p = 0.006 and 0.002, respectively). No significant difference was observed between treatments for tensile stress at yield.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/1003/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13041003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Amit U. Raysoni;
Esmeralda Mendez; August Luna; Joe Collins;Amit U. Raysoni
Amit U. Raysoni in OpenAIREdoi: 10.3390/su14074288
Aggregate and limestone mining in San Antonio’s Bexar and Comal counties in Texas, USA, has caused considerable health concerns as of late. Aggregate mining actions can result in localized air quality issues in any neighborhood. Furthermore, heavy truck traffic, hauling, and transportation of the mined material contribute to pollution. In this research, PM species were sampled at four locations north of the San Antonio city limits. The data were collected using a TSI Air Quality Sampler that sampled PM1, PM2.5, PM4, PM10, wind speed, wind direction, temperature, and relative humidity. Continuous data with 1 min averages were recorded during the study period from August to September 2019. The instrument was stationed at every location for a period of 7 days each. The four locations were a ranch, an open field, a residential compound, and an elementary school. PM1 and PM2.5 concentration levels were lower compared to PM10 concentrations at all four studied sites. Our results suggest that PM concentrations are primarily impacted by mining activities. PM species were highest at the residential compound due to its proximity to an active mining area, resulting in deleterious health effects for neighbors living in the vicinity of the sampled site.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4288/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Editorial CSIC Authors:B. Arranz;
B. Arranz
B. Arranz in OpenAIREI. Oteiza;
I. Oteiza
I. Oteiza in OpenAIREE. Delgado;
E. Delgado
E. Delgado in OpenAIREA. Gutiérrez;
A. Gutiérrez
A. Gutiérrez in OpenAIREdoi: 10.3989/ic.67523
handle: 10261/219463
El proyecto REVen “Rehabilitación energética de viviendas sociales, aplicando productos innovadores de ventana con marcado CE” (BIA2014-56650-JIN), tiene como objetivo realizar un análisis integral del impacto de la ventana en los aspectos relativos a eficiencia energética y calidad ambiental. Para caracterizar los flujos de energía y las condiciones ambientales internas se ha construido el Laboratorio REVen. Este artículo describe la construcción y la monitorización de este laboratorio analizando los datos de su primer año de funcionamiento. Los resultados permiten afirmar que se logra una mejora significativa del confort térmico obteniendo un ahorro de energía anual del 25 %.
Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 147 Powered bymore_vert Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Jacobo Porteiro;Raquel Pérez-Orozco;
Raquel Pérez-Orozco
Raquel Pérez-Orozco in OpenAIREDavid Patiño;
David Patiño
David Patiño in OpenAIREJosé Luis Míguez;
José Luis Míguez
José Luis Míguez in OpenAIREConsidering recent environmental regulations, the need to adapt domestic biomass combustion systems to models that generate less emissions has gained relative importance. The present research proposes an analysis of the bed cooling effects on emission patterns, specifically focusing on the concentration, typology and morphological aspects of the released particles. The study was carried out by comparing the behaviour of a small-scale pilot plant with air stratification, with and without bed cooling. The results revealed an optimal behaviour of the facility with distributions of 30% primary-70% secondary air, accompanied by a significant decrease in emissions due to the reduction in the operating temperatures. More than 75% of the particles were retained in the bed on the cooled surfaces due to the effect of the prominent temperature gradient that was produced. Among the types of emitted particles (mostly with sizes below 0.1 μm), the presence of partial biomass degradation remnants was observed, representing three-quarters of the total collected matter. To a lesser extent, the presence of carbonaceous agglomerates was detected and usually in very compact clusters; however, in cases of high primary air supply, large amounts of immature soot were observed. Agencia Estatal de Investigación | Ref. RTI2018-100765-B-I00
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Center for Energy and Env...NSF| Center for Energy and Environmental SustainabilityAuthors:Raghava R. Kommalapati;
Raghava R. Kommalapati
Raghava R. Kommalapati in OpenAIREDo-Eun Choe;
Do-Eun Choe
Do-Eun Choe in OpenAIREHongbo Du;
Venkata S. V. Botlaguduru; +2 AuthorsHongbo Du
Hongbo Du in OpenAIRERaghava R. Kommalapati;
Raghava R. Kommalapati
Raghava R. Kommalapati in OpenAIREDo-Eun Choe;
Do-Eun Choe
Do-Eun Choe in OpenAIREHongbo Du;
Venkata S. V. Botlaguduru; Venkata S. V. Botlaguduru; Jesuina Chipindula;Hongbo Du
Hongbo Du in OpenAIREThe Houston-Dallas (I-45) corridor is the busiest route among 18 traffic corridors in Texas, USA. The expected population growth and the surge in passenger mobility may result in a significant impact on the regional environment. This study uses a life cycle framework to predict and evaluate the net changes of environmental impact associated with the potential development of a high-speed rail (HSR) System along the I-45 corridor through its life cycle. The environmental impact is estimated in terms of CO2 and greenhouse gas (GHG) emissions per vehicle/passenger-kilometers traveled (V/PKT) using life cycle assessment. The analyses are performed referring to the Ecoinvent 3.4 inventory database through the phases: material extraction and processing, infrastructure construction, vehicle manufacturing, system operation, and end of life. The environmental benefit is evaluated by comparing the potential development of the HSR system with those of the existing transportation systems. The vehicle component, especially operation and maintenance of vehicles, is the primary contributor to the total global warming potential with about 93% of the life cycle GHG emissions. For the infrastructure component, 56.76% of GHG emissions result from the material extraction and processing phase (23.75 kgCO2eq/VKT). Various life cycle emissions of HSR except PM are significantly lower than for passenger cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12469-021-00264-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu