Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
112 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Open Source
  • Embargo
  • ES

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;

    The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;

    The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; +3 Authors

    Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; +3 Authors

    Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;

    The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;

    The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; +1 Authors

    AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2025 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2025 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; +1 Authors

    AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2025 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2025 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez Ballesta, Anna;

    La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility54
    visibilityviews54
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez Ballesta, Anna;

    La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility54
    visibilityviews54
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sala Siso, Roger;

    With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility42
    visibilityviews42
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sala Siso, Roger;

    With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility42
    visibilityviews42
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gong, Li;

    [eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Doctoral thesis . 2024
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility93
    visibilityviews93
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Doctoral thesis . 2024
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gong, Li;

    [eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Doctoral thesis . 2024
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility93
    visibilityviews93
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Doctoral thesis . 2024
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jae Taek Oh; Yongjie Wang; Carmelita Rodà; Debranjan Mandal; +3 Authors

    A post-deposition in situ passivation strategy using a multi-functional molecular agent is reported with enhanced colloidal dispersibility of an environmentally-friendly AgBiS2 nanocrystal ink, achieving a PCE over 10% in a solar cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2024 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility18
    visibilityviews18
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2024 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jae Taek Oh; Yongjie Wang; Carmelita Rodà; Debranjan Mandal; +3 Authors

    A post-deposition in situ passivation strategy using a multi-functional molecular agent is reported with enhanced colloidal dispersibility of an environmentally-friendly AgBiS2 nanocrystal ink, achieving a PCE over 10% in a solar cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2024 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility18
    visibilityviews18
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2024 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marquez Torres, Alba;

    El cambio climático es un desafío polifacético que impacta profundamente en los entornos agrícolas, forestales y urbanos de todo el mundo. Esta tesis aborda la necesidad urgente de comprender y mitigar los efectos causados por el cambio climático, integrando la perspectiva ecológica y social. Así, analiza como la modelización socio-ecológica integrada puede mejorar la resiliencia y la capacidad de adaptación para hacer frente a los retos del cambio climático. Hasta ahora, las investigaciones han analizado los impactos del cambio climático dentro de marcos aislados, ya sea centrados en los impactos ecológicos o sociales. En esta conceptualización se ignora la interrelación de estos sistemas y no se consigue integrar el riesgo en su conjunto, adaptado al contexto ni identificar las oportunidades específicas. La tesis identifica este vacío en la evaluación socio-ecológica integrada bajo los riesgos climáticos, en diferentes contextos, poniéndolo al alcance tanto de científicos como de gestores del territorio. Esta investigación busca abordar este vacío generando estrategias resilientes y efectivas que mejoren la sostenibilidad a largo plazo. Impulsada por técnicas de razonamiento automático e inteligencia artificial, y alineada con los principios de la ciencia abierta y colaborativa, la metodología de esta tesis es innovadora e interdisciplinaria. Abarca el uso de modelos espacialmente explícitos adaptados al contexto, mediante datos de sensores remotos, el uso de sistemas de información geográfica y algoritmos avanzados de aprendizaje automático. Este marco metodológico permite un análisis detallado de interacciones complejas entre variables climáticas y ambientales de los sistemas socio-ecológicos. Los resultados de esta investigación destacan la eficiencia de la modelización integrada para comprender, pronosticar y mitigar los impactos potenciales del cambio climáticos. En los sistemas agrícolas, los modelos proyectan cambios en la dinámica ganadera, la lixiviación de nitrógeno y la salud de los pastos, lo cual lleva a prácticas de gestión integrales más sostenibles. En el sector forestal, los modelos de riesgo de incendios muestran una mayor precisión en la predicción de la probabilidad de incendios forestales y fundamentan las prácticas de gestión y prevención. El análisis urbano dentro de la tesis revela las claves de los efectos de enfriamiento de las zonas verdes, impulsando iniciativas de planificación urbana para ciudades más resilientes contra el aumento de las temperaturas. Los hallazgos de esta tesis identifican el papel crucial que ejerce la modelización estratégica en la comprensión y acción sobre los complejos desafíos que ejerce el cambio climático sobre los sistemas socio-ecológicos. Las implicaciones de esta investigación alcanzan ámbitos diversos y requieren apoyo de los agentes sociales para que se puedan desarrollar e implementar políticas de acción. Tales políticas podrán garantizar que los sistemas socio-ecológicos sean resilientes no solo ante los riesgos climáticos actuales, sino que también sean capaces de adaptarse a las condiciones climáticas futuras. Además, se pide un esfuerzo en promover la ciencia abierta, así como una colaboración transversal continúa para poder garantizar el desarrollo sostenible y la resiliencia de los sistemas socio-ecológicos a múltiples escalas. El canvi climàtic és un desafiament polifacètic que impacta profundament en els entorns agrícoles, forestals i urbans de tot el món. Aquesta tesi aborda la necessitat urgent de comprendre i mitigar els efectes causats pel canvi climàtic, integrant la perspectiva ecològica i social. Així, analitza com la modelització socioecològica integrada pot millorar la resiliència i la capacitat d'adaptació per fer front als reptes del canvi climàtic. Fins ara, les investigacions han analitzat els impactes del canvi climàtic dins de marcs aïllats, ja sigui centrats en els impactes ecològics o socials. En aquesta conceptualització s'ignora la interrelació d'aquests sistemes i no s'aconsegueix integrar el risc en el seu conjunt, adaptat al context ni identificar les oportunitats específiques. La tesi identifica aquest buit en l'avaluació socioecològica integrada sota els riscos climàtics, en diferents contextos, posant-lo a l’abast tant de científics com de gestors del territori. Aquesta investigació busca abordar aquest buit generant estratègies resilients i efectives que millorin la sostenibilitat a llarg termini. Impulsada per tècniques de raonament automàtic i intel·ligència artificial, alineada amb els principis de la ciència oberta i col·laborativa, la metodologia d'aquesta tesi és innovadora i interdisciplinària. Abasta l'ús de models espacialment explícits adaptats al context, mitjançant dades de sensors remots, l’ús de sistemes d'informació geogràfica i algorismes avançats d'aprenentatge automàtic. Aquest marc metodològic permet una anàlisi detallada d'interaccions complexes entre variables climàtiques i ambientals dels sistemes socioecològics. Els resultats d'aquesta recerca destaquen l'eficiència de la modelització integrada per a comprendre, pronosticar i mitigar els impactes potencials del canvi climàtics. En els sistemes agrícoles, els models projecten canvis en la dinàmica ramadera, la lixiviació de nitrogen i la salut de les pastures, la qual cosa porta a pràctiques de gestió integrals més sostenibles. En el sector forestal, els models de risc d'incendis mostren una major precisió en la predicció de la probabilitat d'incendis forestals i fonamenten les pràctiques de gestió i prevenció. L’anàlisi urbà dins de la tesi revela les claus dels efectes de refredament de les zones verdes, impulsant iniciatives de planificació urbana per a ciutats més resilients contra l'augment de les temperatures. Les troballes d’aquesta tesis identifiquen el paper crucial que exerceix la modelització integrada i estratègica en la comprensió i acció sobre els complexos desafiaments del canvi climàtic sobre els sistemes socioecològics. Les implicacions d'aquesta recerca abasten molts àmbits i requereixen suport dels agents socials perquè es puguin desenvolupar i implementar. Tals polítiques podran garantir que els sistemes socioecològics siguin resilients no sols davant dels riscos climàtics actuals sinó també capaços d'adaptar-se a les condicions climàtiques futures. A més, es demana un esforç en ciència oberta així com una col·laboració transversal continua per tal de poder garantir el desenvolupament sostenible i la resiliència dels sistemes socioecològics a múltiples escales. Climate change is a multifaceted challenge that impacts agricultural, forestry, and urban settings in deep ways throughout the world. This thesis addresses the pressing need to understand and mitigate risks caused by climate change from an overall perspective of integrating the ecological and social dimensions of the impacts. The central thesis question investigates the role that integrated socio-ecological modeling can play in enhancing resilience and adaptive capacity within these systems against climate change challenges. Current research typically analyses the impacts of climate change within isolated frameworks, focusing on either ecological or social impacts. The interrelationship between these systems is ignored in this conceptualization and fails to capture the overall risk and opportunities for adaptation. This thesis identifies a critical gap in the integrated assessment of climate risks and responses across different socio-ecological contexts by sharing solutions with scientists and land managers. This research seeks to address this gap by generating resilient and effective strategies that enhance the long-term sustainability of these systems. Empowered by AI-driven and machine reasoning techniques and in line with open and collaborative science, the methodology of this thesis is both innovative and interdisciplinary. It encompasses the use of spatially explicit models adapted to the context, by remotely sensed data, use of geographic information systems, and advanced machine learning algorithms. This methodological framework allows for a detailed analysis of the complex interactions between climate and environmental variables of socio-ecological systems. The results from this research highlight the efficiency of integrated modeling in understanding, forecasting, and mitigating potential impacts of climate change. In agricultural systems, the models project changes in livestock dynamics, nitrogen leaching, and pasture health, leading to integral sustainable management practices. In forestry, fire risk models show an increase in accuracy in predicting the probability of wildfires and better inform effective management and prevention practices. Urban analysis reveals clues to the cooling effects of green spaces, informing urban planning initiatives toward boosting city resilience to rising temperatures. The findings of this work identify the crucial role that strategic integrated modeling plays in understanding and acting upon the complex climate change challenges of socio-ecological systems. The implications of this research are significant, and call for policy support in terms of innovative technologies that can be developed and implemented collaboratively. Such policies will ensure that socio-ecological systems are fit not just for current climate risks but are also able to adapt to changing climatic conditions. Moreover, it calls for an effort to promote open science, as well as continued cross-cutting collaboration, to guarantee the sustainable development and resilience of social-ecological systems at multiple scales.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC SA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC SA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marquez Torres, Alba;

    El cambio climático es un desafío polifacético que impacta profundamente en los entornos agrícolas, forestales y urbanos de todo el mundo. Esta tesis aborda la necesidad urgente de comprender y mitigar los efectos causados por el cambio climático, integrando la perspectiva ecológica y social. Así, analiza como la modelización socio-ecológica integrada puede mejorar la resiliencia y la capacidad de adaptación para hacer frente a los retos del cambio climático. Hasta ahora, las investigaciones han analizado los impactos del cambio climático dentro de marcos aislados, ya sea centrados en los impactos ecológicos o sociales. En esta conceptualización se ignora la interrelación de estos sistemas y no se consigue integrar el riesgo en su conjunto, adaptado al contexto ni identificar las oportunidades específicas. La tesis identifica este vacío en la evaluación socio-ecológica integrada bajo los riesgos climáticos, en diferentes contextos, poniéndolo al alcance tanto de científicos como de gestores del territorio. Esta investigación busca abordar este vacío generando estrategias resilientes y efectivas que mejoren la sostenibilidad a largo plazo. Impulsada por técnicas de razonamiento automático e inteligencia artificial, y alineada con los principios de la ciencia abierta y colaborativa, la metodología de esta tesis es innovadora e interdisciplinaria. Abarca el uso de modelos espacialmente explícitos adaptados al contexto, mediante datos de sensores remotos, el uso de sistemas de información geográfica y algoritmos avanzados de aprendizaje automático. Este marco metodológico permite un análisis detallado de interacciones complejas entre variables climáticas y ambientales de los sistemas socio-ecológicos. Los resultados de esta investigación destacan la eficiencia de la modelización integrada para comprender, pronosticar y mitigar los impactos potenciales del cambio climáticos. En los sistemas agrícolas, los modelos proyectan cambios en la dinámica ganadera, la lixiviación de nitrógeno y la salud de los pastos, lo cual lleva a prácticas de gestión integrales más sostenibles. En el sector forestal, los modelos de riesgo de incendios muestran una mayor precisión en la predicción de la probabilidad de incendios forestales y fundamentan las prácticas de gestión y prevención. El análisis urbano dentro de la tesis revela las claves de los efectos de enfriamiento de las zonas verdes, impulsando iniciativas de planificación urbana para ciudades más resilientes contra el aumento de las temperaturas. Los hallazgos de esta tesis identifican el papel crucial que ejerce la modelización estratégica en la comprensión y acción sobre los complejos desafíos que ejerce el cambio climático sobre los sistemas socio-ecológicos. Las implicaciones de esta investigación alcanzan ámbitos diversos y requieren apoyo de los agentes sociales para que se puedan desarrollar e implementar políticas de acción. Tales políticas podrán garantizar que los sistemas socio-ecológicos sean resilientes no solo ante los riesgos climáticos actuales, sino que también sean capaces de adaptarse a las condiciones climáticas futuras. Además, se pide un esfuerzo en promover la ciencia abierta, así como una colaboración transversal continúa para poder garantizar el desarrollo sostenible y la resiliencia de los sistemas socio-ecológicos a múltiples escalas. El canvi climàtic és un desafiament polifacètic que impacta profundament en els entorns agrícoles, forestals i urbans de tot el món. Aquesta tesi aborda la necessitat urgent de comprendre i mitigar els efectes causats pel canvi climàtic, integrant la perspectiva ecològica i social. Així, analitza com la modelització socioecològica integrada pot millorar la resiliència i la capacitat d'adaptació per fer front als reptes del canvi climàtic. Fins ara, les investigacions han analitzat els impactes del canvi climàtic dins de marcs aïllats, ja sigui centrats en els impactes ecològics o socials. En aquesta conceptualització s'ignora la interrelació d'aquests sistemes i no s'aconsegueix integrar el risc en el seu conjunt, adaptat al context ni identificar les oportunitats específiques. La tesi identifica aquest buit en l'avaluació socioecològica integrada sota els riscos climàtics, en diferents contextos, posant-lo a l’abast tant de científics com de gestors del territori. Aquesta investigació busca abordar aquest buit generant estratègies resilients i efectives que millorin la sostenibilitat a llarg termini. Impulsada per tècniques de raonament automàtic i intel·ligència artificial, alineada amb els principis de la ciència oberta i col·laborativa, la metodologia d'aquesta tesi és innovadora i interdisciplinària. Abasta l'ús de models espacialment explícits adaptats al context, mitjançant dades de sensors remots, l’ús de sistemes d'informació geogràfica i algorismes avançats d'aprenentatge automàtic. Aquest marc metodològic permet una anàlisi detallada d'interaccions complexes entre variables climàtiques i ambientals dels sistemes socioecològics. Els resultats d'aquesta recerca destaquen l'eficiència de la modelització integrada per a comprendre, pronosticar i mitigar els impactes potencials del canvi climàtics. En els sistemes agrícoles, els models projecten canvis en la dinàmica ramadera, la lixiviació de nitrogen i la salut de les pastures, la qual cosa porta a pràctiques de gestió integrals més sostenibles. En el sector forestal, els models de risc d'incendis mostren una major precisió en la predicció de la probabilitat d'incendis forestals i fonamenten les pràctiques de gestió i prevenció. L’anàlisi urbà dins de la tesi revela les claus dels efectes de refredament de les zones verdes, impulsant iniciatives de planificació urbana per a ciutats més resilients contra l'augment de les temperatures. Les troballes d’aquesta tesis identifiquen el paper crucial que exerceix la modelització integrada i estratègica en la comprensió i acció sobre els complexos desafiaments del canvi climàtic sobre els sistemes socioecològics. Les implicacions d'aquesta recerca abasten molts àmbits i requereixen suport dels agents socials perquè es puguin desenvolupar i implementar. Tals polítiques podran garantir que els sistemes socioecològics siguin resilients no sols davant dels riscos climàtics actuals sinó també capaços d'adaptar-se a les condicions climàtiques futures. A més, es demana un esforç en ciència oberta així com una col·laboració transversal continua per tal de poder garantir el desenvolupament sostenible i la resiliència dels sistemes socioecològics a múltiples escales. Climate change is a multifaceted challenge that impacts agricultural, forestry, and urban settings in deep ways throughout the world. This thesis addresses the pressing need to understand and mitigate risks caused by climate change from an overall perspective of integrating the ecological and social dimensions of the impacts. The central thesis question investigates the role that integrated socio-ecological modeling can play in enhancing resilience and adaptive capacity within these systems against climate change challenges. Current research typically analyses the impacts of climate change within isolated frameworks, focusing on either ecological or social impacts. The interrelationship between these systems is ignored in this conceptualization and fails to capture the overall risk and opportunities for adaptation. This thesis identifies a critical gap in the integrated assessment of climate risks and responses across different socio-ecological contexts by sharing solutions with scientists and land managers. This research seeks to address this gap by generating resilient and effective strategies that enhance the long-term sustainability of these systems. Empowered by AI-driven and machine reasoning techniques and in line with open and collaborative science, the methodology of this thesis is both innovative and interdisciplinary. It encompasses the use of spatially explicit models adapted to the context, by remotely sensed data, use of geographic information systems, and advanced machine learning algorithms. This methodological framework allows for a detailed analysis of the complex interactions between climate and environmental variables of socio-ecological systems. The results from this research highlight the efficiency of integrated modeling in understanding, forecasting, and mitigating potential impacts of climate change. In agricultural systems, the models project changes in livestock dynamics, nitrogen leaching, and pasture health, leading to integral sustainable management practices. In forestry, fire risk models show an increase in accuracy in predicting the probability of wildfires and better inform effective management and prevention practices. Urban analysis reveals clues to the cooling effects of green spaces, informing urban planning initiatives toward boosting city resilience to rising temperatures. The findings of this work identify the crucial role that strategic integrated modeling plays in understanding and acting upon the complex climate change challenges of socio-ecological systems. The implications of this research are significant, and call for policy support in terms of innovative technologies that can be developed and implemented collaboratively. Such policies will ensure that socio-ecological systems are fit not just for current climate risks but are also able to adapt to changing climatic conditions. Moreover, it calls for an effort to promote open science, as well as continued cross-cutting collaboration, to guarantee the sustainable development and resilience of social-ecological systems at multiple scales.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC SA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC SA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gordo Gregorio, Paula; Alavi, Hamidreza; Edwards, David J.; Forcada Matheu, Núria; +1 Authors

    Digitalization trends in building management increasingly emphasize the creation of Digital Twins (DTs) for building management but often neglect how occupants interact with these technologies. This paper aims to explore the functionalities of building management systems based on occupant interactions with DTs. To achieve this, occupant preferences are investigated through a questionnaire survey conducted with 106 respondents from two case studies. The survey investigated participants’ interest in using DTs for various building management tasks, their familiarity with DTs and their demographic factors. Analysis results revealed that occupant’s interest in DTs is not significantly influenced by their prior knowledge or gender. Instead, providing access to DTs increased their interest in areas beyond their job roles, particularly in aspects related to comfort and environmental management. Younger participants showed a heightened interest in using DTs for environmental and energy management issues. The study also suggests that promoting occupant interaction with DTs can enhance productivity and satisfaction. This paper underscores the need for additional research to integrate smart technologies into building management with a focus on occupant involvement. It highlights the potential of DTs to improve real-time monitoring and support sustainability initiatives and thus, offers a more inclusive and effective alternative to traditional management tools. This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) under the Grant CIFRE 2017/1782. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building Research & Information
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building Research & Information
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gordo Gregorio, Paula; Alavi, Hamidreza; Edwards, David J.; Forcada Matheu, Núria; +1 Authors

    Digitalization trends in building management increasingly emphasize the creation of Digital Twins (DTs) for building management but often neglect how occupants interact with these technologies. This paper aims to explore the functionalities of building management systems based on occupant interactions with DTs. To achieve this, occupant preferences are investigated through a questionnaire survey conducted with 106 respondents from two case studies. The survey investigated participants’ interest in using DTs for various building management tasks, their familiarity with DTs and their demographic factors. Analysis results revealed that occupant’s interest in DTs is not significantly influenced by their prior knowledge or gender. Instead, providing access to DTs increased their interest in areas beyond their job roles, particularly in aspects related to comfort and environmental management. Younger participants showed a heightened interest in using DTs for environmental and energy management issues. The study also suggests that promoting occupant interaction with DTs can enhance productivity and satisfaction. This paper underscores the need for additional research to integrate smart technologies into building management with a focus on occupant involvement. It highlights the potential of DTs to improve real-time monitoring and support sustainability initiatives and thus, offers a more inclusive and effective alternative to traditional management tools. This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) under the Grant CIFRE 2017/1782. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building Research & Information
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building Research & Information
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
112 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;

    The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Javad Bardi; Sergi Vinardell; Sergi Astals; Konrad Koch;

    The opportunities and challenges of applying micronutrients (MiNs) in full-scale anaerobic digestion (AD) plants has been reviewed. The review discusses the underlying mechanisms and the role of different micronutrients (Fe, Ni, Co, Mo, Zn, Cu, Se) in the enhancement of AD performance, as well as their environmental and economic implications in full-scale AD systems. Bioavailability is a key factor affecting the effectiveness of micronutrients application on the biochemical aspects of AD. Accordingly, the technical aspects of AD with a direct impact on bioavailability have been identified and critically addressed. Mono-supplementation is not the most favorable strategy to increase micronutrient bioavailability due to limited solubility, formation of insoluble compounds, interaction with other compounds, and specific microbial requirements. Nonetheless, co-supplementation can increase the bioavailability due to the simultaneous synergetic effects of co-micronutrients supplementation on the biochemical aspects of AD. However, the inconsistency of reported lab-scale results and the lack of protocols or guidelines for analyzing the bioavailability of micronutrients limit results interpretation and full-scale application. The environmental and economic implications of these micronutrients are other critical factors that need further research. The economic results showed that the mono-supplementation can be economically favorable when a methane enhancement of 20% is achieved. Co-supplementation of micronutrients is the most economically feasible option since this strategy allows reducing the total dosage of micronutrients when compared with mono-supplementation. The authors are grateful for the scholarship from the TUM SEED Center of the Technical University of Munich, which is part of the DAAD (German Academic Exchange Service) program “exceed” supported by DAAD as well as the German Federal Ministry for Economic Cooperation and Development (BMZ) and in cooperation with the hosting Chair of Urban Water System Engineering of TUM. Sergi Astals is thankful to the Spanish Ministry of Science, Innovation and Universities for his Ramon y Cajal. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; +3 Authors

    Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Song, Xijie; Wang, Zhengwei; Jin, Yan; Liu, Chao; +3 Authors

    Pump as turbine (PAT) is a common method of energy recovery, however, vortices are a negative phenom for these units. The objective of this research is to study the effect of vortex motion on the hydraulic loss of pump as turbine, and establishing the correlation mechanism between vortex intensity and turbulence loss. The research method adopts theoretical analysis and model test and numerical simulation. Based on the entropy production theory, the hydraulic loss and the turbulent dissipation in boundary layer induced by vortex motion are studied, revealing the influence of vortices on the energy loss. Results show that the vortex motion can be decomposed into a synchronous component v_sy and a rotational component v_ro, among them, the rotational component v_ro meets to Biot-Savart Law. The turbulent dissipation rate in the boundary layer is closely to the vortex motion, which can characterize the boundary turbulence height. Turbulent flow induced by vortex can propagate in the flow channel of the unit, causing lot of additional hydraulic loss. In the end, a mathematical model between entropy production (Sk) induced by vortex and vortex strength (¿k) was established, indicating that Sk changes with ¿k in the form of a quadratic function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;

    The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tugores Garcias, Juan; Macarulla Martí, Marcel; Gangolells Solanellas, Marta;

    The primary objective of this paper is to develop a hybrid grey box model that integrates air and thermal dynamics to improve accuracy in both domains. The methodology involved developing four grey box models to estimate ventilation airflows using indoor CO2 concentration data and six thermal models to estimate thermal properties and heat gains using indoor temperature data. To ensure accurate parameterization, measurements of outdoor conditions, occupancy, and HVAC operations were incorporated. The results revealed that models treating infiltration and mechanical ventilation as mutually exclusive (IAQ-3 and IAQ-4) and those integrating ventilation heat gains from estimated airflows (T-6) performed most effectively. This hybrid approach underscores the benefits of incorporating ventilation heat loos or gains, based on airflow estimation derived from indoor air quality (IAQ) models, into thermal modelling, significantly improving accuracy and reducing parameter variability. The findings demonstrate the potential of this methodology for applications in ventilation management and HVAC optimization. By enhancing energy efficiency and improving indoor air quality, this approach supports the development of healthier, more sustainable indoor environments. This research was supported by a predoctoral contract grant (reference no. PRE2021-099606) as part of the research and development project IAQ4EDU (reference no. PID2020-117366RB-I00), funded by MCIN/AEI/10.13039/501100011033/FEDER, and is part of the project BINAFET (reference no. TED2021-130047B-C22), funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR. Moreover, this study was supported by the Catalan agency AGAUR through its research group support programme (2021 SGR 00341).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; +1 Authors

    AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2025 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2025 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: María Eugenia Martínez; Franko Restovic; Freddy Urrego; Derie Fuentes; +1 Authors

    AbstractTomato residues are a form of solid waste that can be converted into methane through anaerobic digestion (AD). However, methane production is often limited due to incomplete hydrolysis caused by the high lignocellulosic content of tomato waste. Enzymatic pretreatments represent a promising approach to enhance methane yields by facilitating substrate hydrolysis. This study evaluated four commercial enzymatic blends – Celluclast 1.5 L, Maxoliva HC L, Viscozyme, and Novozym 435 – using biomethane potential (BMP) tests with two operational strategies: (i) preincubation of enzymes with tomato waste prior to AD, and (ii) direct addition of enzymes to the anaerobic digester. Maxoliva achieved the highest methane yield (348 ± 20 mL CH4 g−1 volatile solids (VS)) under preincubation, representing 99.5% of the theoretical BMP and a 90% increase in comparison with the control. Kinetic analysis using the modified Gompertz equation revealed that Maxoliva also exhibited the highest maximum methane production rate (RMAX = 5.5 ± 0.2 mL CH4 g−1 VS day−1) with direct addition. Conversely, Viscozyme showed limited effectiveness, reaching only 47% of the theoretical BMP value. The enhanced methane production observed with certain enzymatic blends is likely attributable to cellulase activity, which facilitates the breakdown of complex carbohydrates into easily biodegradable polysaccharides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2025 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2025 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez Ballesta, Anna;

    La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility54
    visibilityviews54
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez Ballesta, Anna;

    La transició dels sistemes energètics cap a tecnologies energètiques renovables amb baixes emissions de carboni és una mesura clau per mitigar el canvi climàtic. La Unió Europea (UE) ha establert l’objectiu d’aconseguir una reducció d’emissions de gasos d’efecte hivernacle (GEH) del 80% al 95% l’any 2050. El biogàs ha demostrat tenir un potencial important com a font d'energia renovable per a aplicacions industrials i domèstiques i una solució eficient a la crisi energètica global. També pot ajudar a resoldre el problema de la gestió de residus en convertir els materials orgànics de rebuig en energia, i reduir l’ús d’abocadors i les emissions associades de metà, un potent gas d’GEH. Aquest projecte es centra en l’avaluació ambiental de les emissions GEH associades a la producció de biometà liquat en una planta de gestió i producció de biogàs. La metodologia que s’utilitza per calcular la petjada de carboni de la planta és l’Anàlisi del Cicle de Vida (ACV) segons les normatives ISO 14040-44:2006, i la normativa relativa al càlcul de la petjada de carboni de producte ISO 14067:2019. A més, l’avaluació ambiental també inclou el criteri de tall o “Cut-off” per ometre etapes de cicle de vida no rellevants, tipus d’activitats, processos i productes específics; i la metodologia d’aplicació de crèdits o metodologia de càrrega evitada, que consisteix en comptabilitzar com crèdits les emissions que es deixen d’emetre en la producció de biometà en lloc de produir metà d’origen fòssil. Per altra banda, els resultats obtinguts de l’ACV es contraposen amb dades provinents d’eines de càlcul d’emissions de CO2 així com estudis científics rellevants en el camp del biogàs, amb l’objectiu de validar els resultats.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility54
    visibilityviews54
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sala Siso, Roger;

    With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility42
    visibilityviews42
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sala Siso, Roger;

    With the increasing demand for clean and renewable energy sources, the need for reliable offshore wind technologies is undeniable. Given the elevated costs of maintenance at sea, it is crucial to ensure the proper functioning of each of the components of the machine, therefore, proper validation is essential. This thesis presents a methodological approach on the validation of one of the actuators from the yaw system, responsible of keeping the turbine facing the wind at all times. Each actuator is comprised of an electric motor and a variable frequency drive (VFD), which have been tested in a back-to-back test bench, property of GE VERNOVA. First, two small motors have been evaluated to obtain their internal parameters and familiarise with the tools and procedures. Then, two 7.5 kW motors have been studied to ensure that they are capable for implementation in the wind turbine, and they have been compared to find the better candidate. The results have shown that the Bonfiglioli BE160M seems to present better features that the Nord 160M/6CUS in terms of torque capabilities, efficiency, and size. Nevertheless, more testing is desired to corroborate the results. In conclusion, opting for the Bonfiglioli motor could potentially improve the performance of the GE VERNOVA offshore turbines. As future work, it would be interesting to support the findings by simulating real wind loads on the back-to-back test bench and analysing thermal properties of each motor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility42
    visibilityviews42
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gong, Li;

    [eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Doctoral thesis . 2024
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility93
    visibilityviews93
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Doctoral thesis . 2024
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gong, Li;

    [eng] Developing advanced and efficient electrocatalytic energy conversion systems is of great and practical significance for propelling the efficient development of clean energy for the construction of new low-carbon power systems. Among them, electrocatalytic reduction reactions driven by renewable electricity to transform biomass-derived chemicals into biofuels and high value-added chemicals provide an effective way to improve the H/C ratio of biomass-derived chemicals and the stabilizations of bio-oil systems. However, the electrocatalytic reduction of organic compounds is more intricate compared to the electrocatalytic reduction of water molecules. It involves the adsorption of various organic functional groups, multi-step electron transfer, and the generation of organic intermediates. Meanwhile, organic electrocatalytic reduction calls for designing efficient, highly selective, and cost- effective electrocatalysts. During a series conversion process of raw biomass, aldehydes are believed to be particularly troublesome for the aldol condensation and polymerization reactions. To avoid them, hydrogenation processes are necessary. As an alternative to traditional high-pressure and -temperature processing, we choose electrochemistry that can operate in ambient conditions for the conversion of benzaldehyde (BZH), which was chosen as a typical biomass-derived chemical. Another reason for choosing BZH is that the hydrogenation products benzyl alcohol (BA) and hydrobenzoin (HDB) are important industrial chemicals. Based on the mentioned above, this work seeks to design highly efficient and high selective catalysts for the electrocatalytic conversion of the carbonyl group of BZH into BA, HDB or benzoic acid (BZA) in aqueous solution at pH>5 (avoiding the deoxygenation product toluene). Additionally, this work screens the optimal reaction conditions for various products and speculates their most probable reaction pathways. Chapter 4 focused on the electrocatalytic reduction of BZH into BA. Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared and their activity towards the ECH of BZH in a 3M sodium acetate-acetic acid (pH 5.2) aqueous electrolyte is explored. An outstanding ECH rate up to 283 µmol cm-2 h-1 with a Faradic efficiency (FE) of 76% is reached. Besides, higher FEs of up to 96% are achieved using a step-function voltage. Materials studio and density functional theory calculations show these outstanding performances to be associated with the Ni- MOF support that promotes H-bond formation, facilitates water desorption, and induces a favorable tilted BZH adsorption on the surface of the Pd nanoparticles. In this configuration, BZH is bonded to the Pd surface by the carbonyl group rather than through the aromatic ring, thus reducing the energy barriers of the elemental reaction steps and increasing the overall reaction efficiency. Chapter 5 focused on the electrochemical reduction of self-coupling of BZH to HDB using semiconductor electrocatalysts with nanosheet morphologies. The effects of electrode potential and electrolyte pH on BZH self-coupling reaction were comprehensively studied on several semiconductor electrocatalysts. A correlation is observed between their band gap and the electrochemical potential necessary to maximize selectivity towards HDB in alkaline medium, which we associate with the charge accumulation at the semiconductor surface. N-type CuInS2 provides the highest conversion rate at 0.3 mmol cm−2 h−1 with a selectivity of 98.5% at -1.3 V vs. Hg/HgO in aqueous alkaline solution pH=14. Additional density functional theory calculations demonstrate a lower kinetic energy barrier at the CuInS2 surface compared with graphitic carbon, proving its catalytic role in the self-coupling reaction of BZH. Based on the previous two works, we realize that even when selecting materials with poor HER performance, different voltages and pH values have a significant impact on the selectivity of HDB. This drives us towards the rational design of electrocatalysts for these two different reaction pathways. Chapter 6 employed material with exposed active sites Cu2S and the material Cu2S-OAm with ligands capped to catalyze the electrocatalytic reduction reaction of the biomass platform molecule BZH convert into BA and HDB. Cu2S particles are used as electrocatalysts for the BZH electrochemical conversion. We particularly analyze the effect of surface ligands, oleylamine (OAm), on the selective conversion of BZH to BA or HDB. The effect of the electrode potential, electrolyte pH, and temperature are studied. Results indicate that bare Cu2S exhibits higher selectivity towards BA, while OAm-capped Cu2S promotes HDB formation. This difference is explained by the competing adsorption of protons and BZH. During the BZH electrochemical conversion, electrons first transfer to the C in the C=O group to form a ketyl radical. Then the radical either couples with surrounding H+ to form BA or self-couple to produce HDB, depending on the available H+ that is in turn affected by the electrocatalyst surface properties. The presence of OAm inhibits the H adsorption on the electrode surface therefore reducing the formation of high-energy state Had and its combination with ketyl radicals to form BA instead promotes the outer sphere reaction for obtaining HDB. Finally, we turn our attention to the anodic reaction in chapter 7. The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of BZH to BZA coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows the generation of high-value byproducts such as BZA [spa] El desarrollo de sistemas de conversión de energía electrocatalítica avanzados es crucial para la energía limpia y un sistema energético de bajo carbono. La reducción electrocatalítica de productos químicos de biomasa mejora la relación H/C y estabiliza los aceites biológicos, aunque es compleja debido a la transferencia de electrones y generación de intermediarios. Es esencial diseñar electrocatalizadores eficientes y selectivos. La hidrogenación de aldehídos en la biomasa cruda es necesaria para evitar reacciones no deseadas. Se utilizó la electroquímica para convertir benzaldehído (BZH) en productos industriales valiosos como alcohol bencílico (BA) e hidrobencoína (HDB). Este trabajo diseñó catalizadores eficientes para convertir BZH en BA, HDB o ácido benzoico (BZA) en solución acuosa con pH > 5, optimizando las condiciones de reacción. En el Capítulo 4, se usaron nanopartículas de Pd en un marco metal-orgánico de níquel (Ni-MOF-74) logrando una alta eficiencia faradaica (FE) y mejor adsorción de BZH. El Capítulo 5 estudió el acoplamiento de BZH a HDB con electrocatalizadores semiconductores, destacando el CuInS₂ de tipo N por su alta selectividad y eficiencia. En el Capítulo 6, se usaron partículas de Cu₂S con y sin oleylamine (OAm), mostrando que OAm promueve la formación de HDB al inhibir la adsorción de protones. El Capítulo 7 se enfocó en la electrooxidación de BZH a BZA usando nanopartículas de oro (Au NPs) en dióxido de titanio (TiO₂), logrando alta actividad y eficiencia energética, generando además subproductos valiosos. Programa de Doctorat en Electroquímica. Ciència i Tecnologia

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recolector de Ciencia Abierta, RECOLECTA
    Doctoral thesis . 2024
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility93
    visibilityviews93
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Recolector de Ciencia Abierta, RECOLECTA
      Doctoral thesis . 2024
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jae Taek Oh; Yongjie Wang; Carmelita Rodà; Debranjan Mandal; +3 Authors

    A post-deposition in situ passivation strategy using a multi-functional molecular agent is reported with enhanced colloidal dispersibility of an environmentally-friendly AgBiS2 nanocrystal ink, achieving a PCE over 10% in a solar cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2024 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility18
    visibilityviews18
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2024 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jae Taek Oh; Yongjie Wang; Carmelita Rodà; Debranjan Mandal; +3 Authors

    A post-deposition in situ passivation strategy using a multi-functional molecular agent is reported with enhanced colloidal dispersibility of an environmentally-friendly AgBiS2 nanocrystal ink, achieving a PCE over 10% in a solar cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2024 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility18
    visibilityviews18
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2024 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marquez Torres, Alba;

    El cambio climático es un desafío polifacético que impacta profundamente en los entornos agrícolas, forestales y urbanos de todo el mundo. Esta tesis aborda la necesidad urgente de comprender y mitigar los efectos causados por el cambio climático, integrando la perspectiva ecológica y social. Así, analiza como la modelización socio-ecológica integrada puede mejorar la resiliencia y la capacidad de adaptación para hacer frente a los retos del cambio climático. Hasta ahora, las investigaciones han analizado los impactos del cambio climático dentro de marcos aislados, ya sea centrados en los impactos ecológicos o sociales. En esta conceptualización se ignora la interrelación de estos sistemas y no se consigue integrar el riesgo en su conjunto, adaptado al contexto ni identificar las oportunidades específicas. La tesis identifica este vacío en la evaluación socio-ecológica integrada bajo los riesgos climáticos, en diferentes contextos, poniéndolo al alcance tanto de científicos como de gestores del territorio. Esta investigación busca abordar este vacío generando estrategias resilientes y efectivas que mejoren la sostenibilidad a largo plazo. Impulsada por técnicas de razonamiento automático e inteligencia artificial, y alineada con los principios de la ciencia abierta y colaborativa, la metodología de esta tesis es innovadora e interdisciplinaria. Abarca el uso de modelos espacialmente explícitos adaptados al contexto, mediante datos de sensores remotos, el uso de sistemas de información geográfica y algoritmos avanzados de aprendizaje automático. Este marco metodológico permite un análisis detallado de interacciones complejas entre variables climáticas y ambientales de los sistemas socio-ecológicos. Los resultados de esta investigación destacan la eficiencia de la modelización integrada para comprender, pronosticar y mitigar los impactos potenciales del cambio climáticos. En los sistemas agrícolas, los modelos proyectan cambios en la dinámica ganadera, la lixiviación de nitrógeno y la salud de los pastos, lo cual lleva a prácticas de gestión integrales más sostenibles. En el sector forestal, los modelos de riesgo de incendios muestran una mayor precisión en la predicción de la probabilidad de incendios forestales y fundamentan las prácticas de gestión y prevención. El análisis urbano dentro de la tesis revela las claves de los efectos de enfriamiento de las zonas verdes, impulsando iniciativas de planificación urbana para ciudades más resilientes contra el aumento de las temperaturas. Los hallazgos de esta tesis identifican el papel crucial que ejerce la modelización estratégica en la comprensión y acción sobre los complejos desafíos que ejerce el cambio climático sobre los sistemas socio-ecológicos. Las implicaciones de esta investigación alcanzan ámbitos diversos y requieren apoyo de los agentes sociales para que se puedan desarrollar e implementar políticas de acción. Tales políticas podrán garantizar que los sistemas socio-ecológicos sean resilientes no solo ante los riesgos climáticos actuales, sino que también sean capaces de adaptarse a las condiciones climáticas futuras. Además, se pide un esfuerzo en promover la ciencia abierta, así como una colaboración transversal continúa para poder garantizar el desarrollo sostenible y la resiliencia de los sistemas socio-ecológicos a múltiples escalas. El canvi climàtic és un desafiament polifacètic que impacta profundament en els entorns agrícoles, forestals i urbans de tot el món. Aquesta tesi aborda la necessitat urgent de comprendre i mitigar els efectes causats pel canvi climàtic, integrant la perspectiva ecològica i social. Així, analitza com la modelització socioecològica integrada pot millorar la resiliència i la capacitat d'adaptació per fer front als reptes del canvi climàtic. Fins ara, les investigacions han analitzat els impactes del canvi climàtic dins de marcs aïllats, ja sigui centrats en els impactes ecològics o socials. En aquesta conceptualització s'ignora la interrelació d'aquests sistemes i no s'aconsegueix integrar el risc en el seu conjunt, adaptat al context ni identificar les oportunitats específiques. La tesi identifica aquest buit en l'avaluació socioecològica integrada sota els riscos climàtics, en diferents contextos, posant-lo a l’abast tant de científics com de gestors del territori. Aquesta investigació busca abordar aquest buit generant estratègies resilients i efectives que millorin la sostenibilitat a llarg termini. Impulsada per tècniques de raonament automàtic i intel·ligència artificial, alineada amb els principis de la ciència oberta i col·laborativa, la metodologia d'aquesta tesi és innovadora i interdisciplinària. Abasta l'ús de models espacialment explícits adaptats al context, mitjançant dades de sensors remots, l’ús de sistemes d'informació geogràfica i algorismes avançats d'aprenentatge automàtic. Aquest marc metodològic permet una anàlisi detallada d'interaccions complexes entre variables climàtiques i ambientals dels sistemes socioecològics. Els resultats d'aquesta recerca destaquen l'eficiència de la modelització integrada per a comprendre, pronosticar i mitigar els impactes potencials del canvi climàtics. En els sistemes agrícoles, els models projecten canvis en la dinàmica ramadera, la lixiviació de nitrogen i la salut de les pastures, la qual cosa porta a pràctiques de gestió integrals més sostenibles. En el sector forestal, els models de risc d'incendis mostren una major precisió en la predicció de la probabilitat d'incendis forestals i fonamenten les pràctiques de gestió i prevenció. L’anàlisi urbà dins de la tesi revela les claus dels efectes de refredament de les zones verdes, impulsant iniciatives de planificació urbana per a ciutats més resilients contra l'augment de les temperatures. Les troballes d’aquesta tesis identifiquen el paper crucial que exerceix la modelització integrada i estratègica en la comprensió i acció sobre els complexos desafiaments del canvi climàtic sobre els sistemes socioecològics. Les implicacions d'aquesta recerca abasten molts àmbits i requereixen suport dels agents socials perquè es puguin desenvolupar i implementar. Tals polítiques podran garantir que els sistemes socioecològics siguin resilients no sols davant dels riscos climàtics actuals sinó també capaços d'adaptar-se a les condicions climàtiques futures. A més, es demana un esforç en ciència oberta així com una col·laboració transversal continua per tal de poder garantir el desenvolupament sostenible i la resiliència dels sistemes socioecològics a múltiples escales. Climate change is a multifaceted challenge that impacts agricultural, forestry, and urban settings in deep ways throughout the world. This thesis addresses the pressing need to understand and mitigate risks caused by climate change from an overall perspective of integrating the ecological and social dimensions of the impacts. The central thesis question investigates the role that integrated socio-ecological modeling can play in enhancing resilience and adaptive capacity within these systems against climate change challenges. Current research typically analyses the impacts of climate change within isolated frameworks, focusing on either ecological or social impacts. The interrelationship between these systems is ignored in this conceptualization and fails to capture the overall risk and opportunities for adaptation. This thesis identifies a critical gap in the integrated assessment of climate risks and responses across different socio-ecological contexts by sharing solutions with scientists and land managers. This research seeks to address this gap by generating resilient and effective strategies that enhance the long-term sustainability of these systems. Empowered by AI-driven and machine reasoning techniques and in line with open and collaborative science, the methodology of this thesis is both innovative and interdisciplinary. It encompasses the use of spatially explicit models adapted to the context, by remotely sensed data, use of geographic information systems, and advanced machine learning algorithms. This methodological framework allows for a detailed analysis of the complex interactions between climate and environmental variables of socio-ecological systems. The results from this research highlight the efficiency of integrated modeling in understanding, forecasting, and mitigating potential impacts of climate change. In agricultural systems, the models project changes in livestock dynamics, nitrogen leaching, and pasture health, leading to integral sustainable management practices. In forestry, fire risk models show an increase in accuracy in predicting the probability of wildfires and better inform effective management and prevention practices. Urban analysis reveals clues to the cooling effects of green spaces, informing urban planning initiatives toward boosting city resilience to rising temperatures. The findings of this work identify the crucial role that strategic integrated modeling plays in understanding and acting upon the complex climate change challenges of socio-ecological systems. The implications of this research are significant, and call for policy support in terms of innovative technologies that can be developed and implemented collaboratively. Such policies will ensure that socio-ecological systems are fit not just for current climate risks but are also able to adapt to changing climatic conditions. Moreover, it calls for an effort to promote open science, as well as continued cross-cutting collaboration, to guarantee the sustainable development and resilience of social-ecological systems at multiple scales.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC SA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC SA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marquez Torres, Alba;

    El cambio climático es un desafío polifacético que impacta profundamente en los entornos agrícolas, forestales y urbanos de todo el mundo. Esta tesis aborda la necesidad urgente de comprender y mitigar los efectos causados por el cambio climático, integrando la perspectiva ecológica y social. Así, analiza como la modelización socio-ecológica integrada puede mejorar la resiliencia y la capacidad de adaptación para hacer frente a los retos del cambio climático. Hasta ahora, las investigaciones han analizado los impactos del cambio climático dentro de marcos aislados, ya sea centrados en los impactos ecológicos o sociales. En esta conceptualización se ignora la interrelación de estos sistemas y no se consigue integrar el riesgo en su conjunto, adaptado al contexto ni identificar las oportunidades específicas. La tesis identifica este vacío en la evaluación socio-ecológica integrada bajo los riesgos climáticos, en diferentes contextos, poniéndolo al alcance tanto de científicos como de gestores del territorio. Esta investigación busca abordar este vacío generando estrategias resilientes y efectivas que mejoren la sostenibilidad a largo plazo. Impulsada por técnicas de razonamiento automático e inteligencia artificial, y alineada con los principios de la ciencia abierta y colaborativa, la metodología de esta tesis es innovadora e interdisciplinaria. Abarca el uso de modelos espacialmente explícitos adaptados al contexto, mediante datos de sensores remotos, el uso de sistemas de información geográfica y algoritmos avanzados de aprendizaje automático. Este marco metodológico permite un análisis detallado de interacciones complejas entre variables climáticas y ambientales de los sistemas socio-ecológicos. Los resultados de esta investigación destacan la eficiencia de la modelización integrada para comprender, pronosticar y mitigar los impactos potenciales del cambio climáticos. En los sistemas agrícolas, los modelos proyectan cambios en la dinámica ganadera, la lixiviación de nitrógeno y la salud de los pastos, lo cual lleva a prácticas de gestión integrales más sostenibles. En el sector forestal, los modelos de riesgo de incendios muestran una mayor precisión en la predicción de la probabilidad de incendios forestales y fundamentan las prácticas de gestión y prevención. El análisis urbano dentro de la tesis revela las claves de los efectos de enfriamiento de las zonas verdes, impulsando iniciativas de planificación urbana para ciudades más resilientes contra el aumento de las temperaturas. Los hallazgos de esta tesis identifican el papel crucial que ejerce la modelización estratégica en la comprensión y acción sobre los complejos desafíos que ejerce el cambio climático sobre los sistemas socio-ecológicos. Las implicaciones de esta investigación alcanzan ámbitos diversos y requieren apoyo de los agentes sociales para que se puedan desarrollar e implementar políticas de acción. Tales políticas podrán garantizar que los sistemas socio-ecológicos sean resilientes no solo ante los riesgos climáticos actuales, sino que también sean capaces de adaptarse a las condiciones climáticas futuras. Además, se pide un esfuerzo en promover la ciencia abierta, así como una colaboración transversal continúa para poder garantizar el desarrollo sostenible y la resiliencia de los sistemas socio-ecológicos a múltiples escalas. El canvi climàtic és un desafiament polifacètic que impacta profundament en els entorns agrícoles, forestals i urbans de tot el món. Aquesta tesi aborda la necessitat urgent de comprendre i mitigar els efectes causats pel canvi climàtic, integrant la perspectiva ecològica i social. Així, analitza com la modelització socioecològica integrada pot millorar la resiliència i la capacitat d'adaptació per fer front als reptes del canvi climàtic. Fins ara, les investigacions han analitzat els impactes del canvi climàtic dins de marcs aïllats, ja sigui centrats en els impactes ecològics o socials. En aquesta conceptualització s'ignora la interrelació d'aquests sistemes i no s'aconsegueix integrar el risc en el seu conjunt, adaptat al context ni identificar les oportunitats específiques. La tesi identifica aquest buit en l'avaluació socioecològica integrada sota els riscos climàtics, en diferents contextos, posant-lo a l’abast tant de científics com de gestors del territori. Aquesta investigació busca abordar aquest buit generant estratègies resilients i efectives que millorin la sostenibilitat a llarg termini. Impulsada per tècniques de raonament automàtic i intel·ligència artificial, alineada amb els principis de la ciència oberta i col·laborativa, la metodologia d'aquesta tesi és innovadora i interdisciplinària. Abasta l'ús de models espacialment explícits adaptats al context, mitjançant dades de sensors remots, l’ús de sistemes d'informació geogràfica i algorismes avançats d'aprenentatge automàtic. Aquest marc metodològic permet una anàlisi detallada d'interaccions complexes entre variables climàtiques i ambientals dels sistemes socioecològics. Els resultats d'aquesta recerca destaquen l'eficiència de la modelització integrada per a comprendre, pronosticar i mitigar els impactes potencials del canvi climàtics. En els sistemes agrícoles, els models projecten canvis en la dinàmica ramadera, la lixiviació de nitrogen i la salut de les pastures, la qual cosa porta a pràctiques de gestió integrals més sostenibles. En el sector forestal, els models de risc d'incendis mostren una major precisió en la predicció de la probabilitat d'incendis forestals i fonamenten les pràctiques de gestió i prevenció. L’anàlisi urbà dins de la tesi revela les claus dels efectes de refredament de les zones verdes, impulsant iniciatives de planificació urbana per a ciutats més resilients contra l'augment de les temperatures. Les troballes d’aquesta tesis identifiquen el paper crucial que exerceix la modelització integrada i estratègica en la comprensió i acció sobre els complexos desafiaments del canvi climàtic sobre els sistemes socioecològics. Les implicacions d'aquesta recerca abasten molts àmbits i requereixen suport dels agents socials perquè es puguin desenvolupar i implementar. Tals polítiques podran garantir que els sistemes socioecològics siguin resilients no sols davant dels riscos climàtics actuals sinó també capaços d'adaptar-se a les condicions climàtiques futures. A més, es demana un esforç en ciència oberta així com una col·laboració transversal continua per tal de poder garantir el desenvolupament sostenible i la resiliència dels sistemes socioecològics a múltiples escales. Climate change is a multifaceted challenge that impacts agricultural, forestry, and urban settings in deep ways throughout the world. This thesis addresses the pressing need to understand and mitigate risks caused by climate change from an overall perspective of integrating the ecological and social dimensions of the impacts. The central thesis question investigates the role that integrated socio-ecological modeling can play in enhancing resilience and adaptive capacity within these systems against climate change challenges. Current research typically analyses the impacts of climate change within isolated frameworks, focusing on either ecological or social impacts. The interrelationship between these systems is ignored in this conceptualization and fails to capture the overall risk and opportunities for adaptation. This thesis identifies a critical gap in the integrated assessment of climate risks and responses across different socio-ecological contexts by sharing solutions with scientists and land managers. This research seeks to address this gap by generating resilient and effective strategies that enhance the long-term sustainability of these systems. Empowered by AI-driven and machine reasoning techniques and in line with open and collaborative science, the methodology of this thesis is both innovative and interdisciplinary. It encompasses the use of spatially explicit models adapted to the context, by remotely sensed data, use of geographic information systems, and advanced machine learning algorithms. This methodological framework allows for a detailed analysis of the complex interactions between climate and environmental variables of socio-ecological systems. The results from this research highlight the efficiency of integrated modeling in understanding, forecasting, and mitigating potential impacts of climate change. In agricultural systems, the models project changes in livestock dynamics, nitrogen leaching, and pasture health, leading to integral sustainable management practices. In forestry, fire risk models show an increase in accuracy in predicting the probability of wildfires and better inform effective management and prevention practices. Urban analysis reveals clues to the cooling effects of green spaces, informing urban planning initiatives toward boosting city resilience to rising temperatures. The findings of this work identify the crucial role that strategic integrated modeling plays in understanding and acting upon the complex climate change challenges of socio-ecological systems. The implications of this research are significant, and call for policy support in terms of innovative technologies that can be developed and implemented collaboratively. Such policies will ensure that socio-ecological systems are fit not just for current climate risks but are also able to adapt to changing climatic conditions. Moreover, it calls for an effort to promote open science, as well as continued cross-cutting collaboration, to guarantee the sustainable development and resilience of social-ecological systems at multiple scales.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tesis Doctorals en Xarxa
    Doctoral thesis . 2024
    License: CC BY NC SA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tesis Doctorals en X...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tesis Doctorals en Xarxa
      Doctoral thesis . 2024
      License: CC BY NC SA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gordo Gregorio, Paula; Alavi, Hamidreza; Edwards, David J.; Forcada Matheu, Núria; +1 Authors

    Digitalization trends in building management increasingly emphasize the creation of Digital Twins (DTs) for building management but often neglect how occupants interact with these technologies. This paper aims to explore the functionalities of building management systems based on occupant interactions with DTs. To achieve this, occupant preferences are investigated through a questionnaire survey conducted with 106 respondents from two case studies. The survey investigated participants’ interest in using DTs for various building management tasks, their familiarity with DTs and their demographic factors. Analysis results revealed that occupant’s interest in DTs is not significantly influenced by their prior knowledge or gender. Instead, providing access to DTs increased their interest in areas beyond their job roles, particularly in aspects related to comfort and environmental management. Younger participants showed a heightened interest in using DTs for environmental and energy management issues. The study also suggests that promoting occupant interaction with DTs can enhance productivity and satisfaction. This paper underscores the need for additional research to integrate smart technologies into building management with a focus on occupant involvement. It highlights the potential of DTs to improve real-time monitoring and support sustainability initiatives and thus, offers a more inclusive and effective alternative to traditional management tools. This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) under the Grant CIFRE 2017/1782. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building Research & Information
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building Research & Information
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gordo Gregorio, Paula; Alavi, Hamidreza; Edwards, David J.; Forcada Matheu, Núria; +1 Authors

    Digitalization trends in building management increasingly emphasize the creation of Digital Twins (DTs) for building management but often neglect how occupants interact with these technologies. This paper aims to explore the functionalities of building management systems based on occupant interactions with DTs. To achieve this, occupant preferences are investigated through a questionnaire survey conducted with 106 respondents from two case studies. The survey investigated participants’ interest in using DTs for various building management tasks, their familiarity with DTs and their demographic factors. Analysis results revealed that occupant’s interest in DTs is not significantly influenced by their prior knowledge or gender. Instead, providing access to DTs increased their interest in areas beyond their job roles, particularly in aspects related to comfort and environmental management. Younger participants showed a heightened interest in using DTs for environmental and energy management issues. The study also suggests that promoting occupant interaction with DTs can enhance productivity and satisfaction. This paper underscores the need for additional research to integrate smart technologies into building management with a focus on occupant involvement. It highlights the potential of DTs to improve real-time monitoring and support sustainability initiatives and thus, offers a more inclusive and effective alternative to traditional management tools. This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) under the Grant CIFRE 2017/1782. Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Building Research & Information
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Building Research & Information
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph