- home
- Advanced Search
- Energy Research
- ES
- Bioresource Technology
- Energy Research
- ES
- Bioresource Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Raúl Muñoz; F. Rogalla; S.I. Pérez-Elvira; Fernando Fdz-Polanco; M.E. Alzate;pmid: 22940359
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Raúl Muñoz; F. Rogalla; S.I. Pérez-Elvira; Fernando Fdz-Polanco; M.E. Alzate;pmid: 22940359
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Torres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; +2 AuthorsTorres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; Fernández, Emilio; Dubini, A;In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Torres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; +2 AuthorsTorres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; Fernández, Emilio; Dubini, A;In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Cristina Otero; Estela Hernández-Martín;pmid: 17321130
Enzymatic syntheses of biodiesel via alcoholysis of different vegetable oils (sunflower, borage, olive and soybean) have been studied. Loss of lipase activity induced by the nucleophile is greater with methanol than with ethanol, and is greater for Lipozyme TL IM than for Novozym 435. The optimum volume of ethanol depends on the loading of solid biocatalyst and is higher for preparations of Novozym 435 than for Lipozyme TL IM. Maximum rates were obtained with Lipozyme TL IM, for a molar ratio of alcohol to FA residues of 0.33. By contrast, Novozym 435 requires at least a 2:1 ratio. Alcoholysis of the vegetable oils is faster with Lipozyme TL IM than with Novozym 435. Use of a high loading of Novozym 435 (50% w/w) and a large molar excess of ethanol are required to obtain an initial rate similar to that obtained with Lipozyme TL IM at a lower enzyme loading (10% w/w) and an equimolar ratio of ethanol and FA residues. Novozym 435 produces quantitative conversions in only 7h at 25 degrees C, but complete conversions are not obtained with Lipozyme TL IM. Three stage stepwise addition of ethanol yields 84% conversion to ethyl esters for Lipozyme TL IM. Hence use of Novozym 435 is preferred. After nine cycles in a batch reactor Novozym 435 retained 85% of its initial activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu220 citations 220 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Cristina Otero; Estela Hernández-Martín;pmid: 17321130
Enzymatic syntheses of biodiesel via alcoholysis of different vegetable oils (sunflower, borage, olive and soybean) have been studied. Loss of lipase activity induced by the nucleophile is greater with methanol than with ethanol, and is greater for Lipozyme TL IM than for Novozym 435. The optimum volume of ethanol depends on the loading of solid biocatalyst and is higher for preparations of Novozym 435 than for Lipozyme TL IM. Maximum rates were obtained with Lipozyme TL IM, for a molar ratio of alcohol to FA residues of 0.33. By contrast, Novozym 435 requires at least a 2:1 ratio. Alcoholysis of the vegetable oils is faster with Lipozyme TL IM than with Novozym 435. Use of a high loading of Novozym 435 (50% w/w) and a large molar excess of ethanol are required to obtain an initial rate similar to that obtained with Lipozyme TL IM at a lower enzyme loading (10% w/w) and an equimolar ratio of ethanol and FA residues. Novozym 435 produces quantitative conversions in only 7h at 25 degrees C, but complete conversions are not obtained with Lipozyme TL IM. Three stage stepwise addition of ethanol yields 84% conversion to ethyl esters for Lipozyme TL IM. Hence use of Novozym 435 is preferred. After nine cycles in a batch reactor Novozym 435 retained 85% of its initial activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu220 citations 220 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Spain, SpainPublisher:Elsevier BV Marcel Janssen; María Cuaresma; María Cuaresma; Carlos Vílchez; René H. Wijffels;The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor. The maximal irradiance around noon differs from 400 μmol photons m(-2) s(-1) in the vertical position to 1800 μmol photons m(-2) s(-1) in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture(-1) d(-1). The highest photosynthetic efficiency was found for the vertical simulation, 1.3g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol(-1)) and to the theoretical maximal yield (1.8 g mol(-1)). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Spain, SpainPublisher:Elsevier BV Marcel Janssen; María Cuaresma; María Cuaresma; Carlos Vílchez; René H. Wijffels;The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor. The maximal irradiance around noon differs from 400 μmol photons m(-2) s(-1) in the vertical position to 1800 μmol photons m(-2) s(-1) in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture(-1) d(-1). The highest photosynthetic efficiency was found for the vertical simulation, 1.3g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol(-1)) and to the theoretical maximal yield (1.8 g mol(-1)). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Gallina, Gianluca; Regidor Alfageme, Enrique; Biasi, Pierdomenico; García Serna, Juan;pmid: 30060438
A flow-through reactor for hemicelluloses extraction with hot pressurized water was scaled with a factor of 73. System performance was evaluated by comparing the temperature profile, extraction yield and kinetics of the two systems, performing experiments at 160 and 170°C, 11barg for 90min, using catalpa wood as raw material. Hemicellulose yields were 33.9% and 38.8% (lab scale 160°C and 170°C) and 35.7% and 41.7% (pilot scale 160°C and 170°C). The pilot reactor was upgraded by designing a manifold system capable to provide samples with different liquid residence time during the same experiment. Tests at 140, 150, 160 and 170°C were carried for 90min. Increasing yields (9.3-40.6%) and decreasing molecular weights (4078-1417Da) were obtained at increasing the temperature. Biomass/water ratio of 1/27 gave total average concentration of xylose of 0.4g/L (140°C) to 1.8g/L (170°C).
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Gallina, Gianluca; Regidor Alfageme, Enrique; Biasi, Pierdomenico; García Serna, Juan;pmid: 30060438
A flow-through reactor for hemicelluloses extraction with hot pressurized water was scaled with a factor of 73. System performance was evaluated by comparing the temperature profile, extraction yield and kinetics of the two systems, performing experiments at 160 and 170°C, 11barg for 90min, using catalpa wood as raw material. Hemicellulose yields were 33.9% and 38.8% (lab scale 160°C and 170°C) and 35.7% and 41.7% (pilot scale 160°C and 170°C). The pilot reactor was upgraded by designing a manifold system capable to provide samples with different liquid residence time during the same experiment. Tests at 140, 150, 160 and 170°C were carried for 90min. Increasing yields (9.3-40.6%) and decreasing molecular weights (4078-1417Da) were obtained at increasing the temperature. Biomass/water ratio of 1/27 gave total average concentration of xylose of 0.4g/L (140°C) to 1.8g/L (170°C).
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Tejada, M.; González, J. L.; Hernández Fernández, María Teresa; García Izquierdo, Carlos;The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Tejada, M.; González, J. L.; Hernández Fernández, María Teresa; García Izquierdo, Carlos;The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Y, Soriano-Jerez; J J, Gallardo-Rodríguez; L, López-Rosales; F, García-Camacho; C, Bressy; E, Molina-Grima; M C, Cerón-García;pmid: 39025371
Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Y, Soriano-Jerez; J J, Gallardo-Rodríguez; L, López-Rosales; F, García-Camacho; C, Bressy; E, Molina-Grima; M C, Cerón-García;pmid: 39025371
Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: José Luis Alonso; Juan Carlos Parajó; Aloia Romaní; Gil Garrote;pmid: 20634063
Eucalyptus globulus wood samples were pretreated in aqueous media under non-isothermal conditions to reach maximal temperatures (T(MAX)) in the range 195-250 degrees C, in order to assess the effects of the pre-treatment severity on the fractionation of wood and on the susceptibility of processed samples toward enzymatic hydrolysis. Both the fraction of cellulose susceptible to hydrolysis and the hydrolysis rate increased with the severity of the pre-treatments, but the overall glucose yield decreased for substrates pretreated at T(MAX) above 220 degrees C owing to cellulose losses. Using substrates pretreated at T(MAX)=220 degrees C, up to 94% of polysaccharides were recovered in the hydrolysis media as mono- or oligo-saccharides. High glucose to ethanol conversions were obtained operating at low enzyme charges in Simultaneous Saccharification and Fermentation mode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: José Luis Alonso; Juan Carlos Parajó; Aloia Romaní; Gil Garrote;pmid: 20634063
Eucalyptus globulus wood samples were pretreated in aqueous media under non-isothermal conditions to reach maximal temperatures (T(MAX)) in the range 195-250 degrees C, in order to assess the effects of the pre-treatment severity on the fractionation of wood and on the susceptibility of processed samples toward enzymatic hydrolysis. Both the fraction of cellulose susceptible to hydrolysis and the hydrolysis rate increased with the severity of the pre-treatments, but the overall glucose yield decreased for substrates pretreated at T(MAX) above 220 degrees C owing to cellulose losses. Using substrates pretreated at T(MAX)=220 degrees C, up to 94% of polysaccharides were recovered in the hydrolysis media as mono- or oligo-saccharides. High glucose to ethanol conversions were obtained operating at low enzyme charges in Simultaneous Saccharification and Fermentation mode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Willy Verstraete; Haydée De Clippeleir; Marta Carballa; Marta Carballa; Siegfried E. Vlaeminck;pmid: 19535244
Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Willy Verstraete; Haydée De Clippeleir; Marta Carballa; Marta Carballa; Siegfried E. Vlaeminck;pmid: 19535244
Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lourdinha Florencio; Patricia Rojas; José Luis Sanz; Mario T. Kato; S. T. S. Veras; S. T. S. Veras;pmid: 30716606
The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.
Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lourdinha Florencio; Patricia Rojas; José Luis Sanz; Mario T. Kato; S. T. S. Veras; S. T. S. Veras;pmid: 30716606
The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.
Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Raúl Muñoz; F. Rogalla; S.I. Pérez-Elvira; Fernando Fdz-Polanco; M.E. Alzate;pmid: 22940359
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Raúl Muñoz; F. Rogalla; S.I. Pérez-Elvira; Fernando Fdz-Polanco; M.E. Alzate;pmid: 22940359
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.06.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Torres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; +2 AuthorsTorres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; Fernández, Emilio; Dubini, A;In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Torres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; +2 AuthorsTorres, María J.; González Ballester, David; Gómez-Osuna, Aitor; Galván, Aurora; Fernández, Emilio; Dubini, A;In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Cristina Otero; Estela Hernández-Martín;pmid: 17321130
Enzymatic syntheses of biodiesel via alcoholysis of different vegetable oils (sunflower, borage, olive and soybean) have been studied. Loss of lipase activity induced by the nucleophile is greater with methanol than with ethanol, and is greater for Lipozyme TL IM than for Novozym 435. The optimum volume of ethanol depends on the loading of solid biocatalyst and is higher for preparations of Novozym 435 than for Lipozyme TL IM. Maximum rates were obtained with Lipozyme TL IM, for a molar ratio of alcohol to FA residues of 0.33. By contrast, Novozym 435 requires at least a 2:1 ratio. Alcoholysis of the vegetable oils is faster with Lipozyme TL IM than with Novozym 435. Use of a high loading of Novozym 435 (50% w/w) and a large molar excess of ethanol are required to obtain an initial rate similar to that obtained with Lipozyme TL IM at a lower enzyme loading (10% w/w) and an equimolar ratio of ethanol and FA residues. Novozym 435 produces quantitative conversions in only 7h at 25 degrees C, but complete conversions are not obtained with Lipozyme TL IM. Three stage stepwise addition of ethanol yields 84% conversion to ethyl esters for Lipozyme TL IM. Hence use of Novozym 435 is preferred. After nine cycles in a batch reactor Novozym 435 retained 85% of its initial activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu220 citations 220 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Cristina Otero; Estela Hernández-Martín;pmid: 17321130
Enzymatic syntheses of biodiesel via alcoholysis of different vegetable oils (sunflower, borage, olive and soybean) have been studied. Loss of lipase activity induced by the nucleophile is greater with methanol than with ethanol, and is greater for Lipozyme TL IM than for Novozym 435. The optimum volume of ethanol depends on the loading of solid biocatalyst and is higher for preparations of Novozym 435 than for Lipozyme TL IM. Maximum rates were obtained with Lipozyme TL IM, for a molar ratio of alcohol to FA residues of 0.33. By contrast, Novozym 435 requires at least a 2:1 ratio. Alcoholysis of the vegetable oils is faster with Lipozyme TL IM than with Novozym 435. Use of a high loading of Novozym 435 (50% w/w) and a large molar excess of ethanol are required to obtain an initial rate similar to that obtained with Lipozyme TL IM at a lower enzyme loading (10% w/w) and an equimolar ratio of ethanol and FA residues. Novozym 435 produces quantitative conversions in only 7h at 25 degrees C, but complete conversions are not obtained with Lipozyme TL IM. Three stage stepwise addition of ethanol yields 84% conversion to ethyl esters for Lipozyme TL IM. Hence use of Novozym 435 is preferred. After nine cycles in a batch reactor Novozym 435 retained 85% of its initial activity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu220 citations 220 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2006.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Spain, SpainPublisher:Elsevier BV Marcel Janssen; María Cuaresma; María Cuaresma; Carlos Vílchez; René H. Wijffels;The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor. The maximal irradiance around noon differs from 400 μmol photons m(-2) s(-1) in the vertical position to 1800 μmol photons m(-2) s(-1) in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture(-1) d(-1). The highest photosynthetic efficiency was found for the vertical simulation, 1.3g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol(-1)) and to the theoretical maximal yield (1.8 g mol(-1)). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Spain, SpainPublisher:Elsevier BV Marcel Janssen; María Cuaresma; María Cuaresma; Carlos Vílchez; René H. Wijffels;The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor. The maximal irradiance around noon differs from 400 μmol photons m(-2) s(-1) in the vertical position to 1800 μmol photons m(-2) s(-1) in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture(-1) d(-1). The highest photosynthetic efficiency was found for the vertical simulation, 1.3g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol(-1)) and to the theoretical maximal yield (1.8 g mol(-1)). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2011License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Gallina, Gianluca; Regidor Alfageme, Enrique; Biasi, Pierdomenico; García Serna, Juan;pmid: 30060438
A flow-through reactor for hemicelluloses extraction with hot pressurized water was scaled with a factor of 73. System performance was evaluated by comparing the temperature profile, extraction yield and kinetics of the two systems, performing experiments at 160 and 170°C, 11barg for 90min, using catalpa wood as raw material. Hemicellulose yields were 33.9% and 38.8% (lab scale 160°C and 170°C) and 35.7% and 41.7% (pilot scale 160°C and 170°C). The pilot reactor was upgraded by designing a manifold system capable to provide samples with different liquid residence time during the same experiment. Tests at 140, 150, 160 and 170°C were carried for 90min. Increasing yields (9.3-40.6%) and decreasing molecular weights (4078-1417Da) were obtained at increasing the temperature. Biomass/water ratio of 1/27 gave total average concentration of xylose of 0.4g/L (140°C) to 1.8g/L (170°C).
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: Gallina, Gianluca; Regidor Alfageme, Enrique; Biasi, Pierdomenico; García Serna, Juan;pmid: 30060438
A flow-through reactor for hemicelluloses extraction with hot pressurized water was scaled with a factor of 73. System performance was evaluated by comparing the temperature profile, extraction yield and kinetics of the two systems, performing experiments at 160 and 170°C, 11barg for 90min, using catalpa wood as raw material. Hemicellulose yields were 33.9% and 38.8% (lab scale 160°C and 170°C) and 35.7% and 41.7% (pilot scale 160°C and 170°C). The pilot reactor was upgraded by designing a manifold system capable to provide samples with different liquid residence time during the same experiment. Tests at 140, 150, 160 and 170°C were carried for 90min. Increasing yields (9.3-40.6%) and decreasing molecular weights (4078-1417Da) were obtained at increasing the temperature. Biomass/water ratio of 1/27 gave total average concentration of xylose of 0.4g/L (140°C) to 1.8g/L (170°C).
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2018License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Tejada, M.; González, J. L.; Hernández Fernández, María Teresa; García Izquierdo, Carlos;The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Tejada, M.; González, J. L.; Hernández Fernández, María Teresa; García Izquierdo, Carlos;The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Y, Soriano-Jerez; J J, Gallardo-Rodríguez; L, López-Rosales; F, García-Camacho; C, Bressy; E, Molina-Grima; M C, Cerón-García;pmid: 39025371
Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Y, Soriano-Jerez; J J, Gallardo-Rodríguez; L, López-Rosales; F, García-Camacho; C, Bressy; E, Molina-Grima; M C, Cerón-García;pmid: 39025371
Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: José Luis Alonso; Juan Carlos Parajó; Aloia Romaní; Gil Garrote;pmid: 20634063
Eucalyptus globulus wood samples were pretreated in aqueous media under non-isothermal conditions to reach maximal temperatures (T(MAX)) in the range 195-250 degrees C, in order to assess the effects of the pre-treatment severity on the fractionation of wood and on the susceptibility of processed samples toward enzymatic hydrolysis. Both the fraction of cellulose susceptible to hydrolysis and the hydrolysis rate increased with the severity of the pre-treatments, but the overall glucose yield decreased for substrates pretreated at T(MAX) above 220 degrees C owing to cellulose losses. Using substrates pretreated at T(MAX)=220 degrees C, up to 94% of polysaccharides were recovered in the hydrolysis media as mono- or oligo-saccharides. High glucose to ethanol conversions were obtained operating at low enzyme charges in Simultaneous Saccharification and Fermentation mode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: José Luis Alonso; Juan Carlos Parajó; Aloia Romaní; Gil Garrote;pmid: 20634063
Eucalyptus globulus wood samples were pretreated in aqueous media under non-isothermal conditions to reach maximal temperatures (T(MAX)) in the range 195-250 degrees C, in order to assess the effects of the pre-treatment severity on the fractionation of wood and on the susceptibility of processed samples toward enzymatic hydrolysis. Both the fraction of cellulose susceptible to hydrolysis and the hydrolysis rate increased with the severity of the pre-treatments, but the overall glucose yield decreased for substrates pretreated at T(MAX) above 220 degrees C owing to cellulose losses. Using substrates pretreated at T(MAX)=220 degrees C, up to 94% of polysaccharides were recovered in the hydrolysis media as mono- or oligo-saccharides. High glucose to ethanol conversions were obtained operating at low enzyme charges in Simultaneous Saccharification and Fermentation mode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.06.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Willy Verstraete; Haydée De Clippeleir; Marta Carballa; Marta Carballa; Siegfried E. Vlaeminck;pmid: 19535244
Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Willy Verstraete; Haydée De Clippeleir; Marta Carballa; Marta Carballa; Siegfried E. Vlaeminck;pmid: 19535244
Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lourdinha Florencio; Patricia Rojas; José Luis Sanz; Mario T. Kato; S. T. S. Veras; S. T. S. Veras;pmid: 30716606
The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.
Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lourdinha Florencio; Patricia Rojas; José Luis Sanz; Mario T. Kato; S. T. S. Veras; S. T. S. Veras;pmid: 30716606
The 1,3-propanediol (1,3-PDO) yield and productivity from glycerol were studied over a 155-day period. A UASB reactor that also contained silicone support for biomass attachment was used to evaluate the optimal operational conditions and microbiota development. The highest average 1,3-PDO yield was 0.54 and 0.48 mol.mol-gly-1 when reactor pH was 5.0-5.5 and the applied loading rate was 18 and 20 g-gly.L-1.d-1 using the pure and crude substrate, respectively. The productivity was close to 7.5 g.L-1.d-1 for both substrates; therefore, the direct use of crude glycerol can be valorized in practice. Clostridium was the predominant genus for 1,3-PDO production and C. pasteurianum was dominant in the biofilm. Using crude glycerol, C. beijerinckii dropped strongly; some Clostridium population was then replaced by Klebsiella pneumoniae and Lactobacillus spp. The good process performance and the advances in the microbiota knowledge are steps forward to obtain a more cost-effective system in practice.
Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu