- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- ES
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- ES
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Marcos G. Alberti; Jaime C. Gálvez; Alejandro Enfedaque; Ana Carmona; Cristina Valverde; Gabriel Pardo;Construction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Marcos G. Alberti; Jaime C. Gálvez; Alejandro Enfedaque; Ana Carmona; Cristina Valverde; Gabriel Pardo;Construction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 SpainPublisher:American Chemical Society (ACS) Authors: Susana Velasco-Lozano; Mato Knez; Fernando López-Gallego;handle: 10261/186689
Sustainable electricity generation is one of the major current challenges for our society. In this context, the evolution of nanomaterials and nanotechnologies has enabled the fabrication of microscopic devices to produce clean energy from a great variety of renewable sources. To expand the possibilities of energy generation, we have designed and fabricated bioinorganic generators capable to produce electricity by conversion of chemical energy from renewable fuel sources. Unlike traditional generators, the systems described herein produce mechanical energy through enzyme-driven gas production which generates vibration and pressure that are thus converted into electricity by the action of a piezoelectric component properly integrated into the device. Our generators are able to produce an electric ernergy from different renewable sources like glucose, ethanol, and amino acids, attaining energy outputs around 250 nJ cm–2 and reaching maximum open-circuit voltages of up to 1 V. In addition, the produced energy can be easily regulated by adjusting both enzyme and fuel concentration which can tune the electrical output according to the application. The systems described herein propose a new concept for self-sufficient energy harvesting that bridges biocatalysis and piezoelectricity, where the energy production is based on the piezoelectric effect triggered by enzymatic action rather than on the enzyme-driven electron transfer that governs biofuel cells. Although the electric output is too low yet to be considered an alternative for energy production, this technology opens the door to power small devices. We envision the utilization of this technology in such remote locations where mechanical energy is lacking but there are chemical energy reservoirs. We would like to acknowledge Marie-Curie Actions (NANOBIENER project), IKERBASQUE foundation for funding F.L.-G., and the support of COST Action CM1303 Systems Biocatalysis. We also acknowledge HERGAR foundation for the funding. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 SpainPublisher:American Chemical Society (ACS) Authors: Susana Velasco-Lozano; Mato Knez; Fernando López-Gallego;handle: 10261/186689
Sustainable electricity generation is one of the major current challenges for our society. In this context, the evolution of nanomaterials and nanotechnologies has enabled the fabrication of microscopic devices to produce clean energy from a great variety of renewable sources. To expand the possibilities of energy generation, we have designed and fabricated bioinorganic generators capable to produce electricity by conversion of chemical energy from renewable fuel sources. Unlike traditional generators, the systems described herein produce mechanical energy through enzyme-driven gas production which generates vibration and pressure that are thus converted into electricity by the action of a piezoelectric component properly integrated into the device. Our generators are able to produce an electric ernergy from different renewable sources like glucose, ethanol, and amino acids, attaining energy outputs around 250 nJ cm–2 and reaching maximum open-circuit voltages of up to 1 V. In addition, the produced energy can be easily regulated by adjusting both enzyme and fuel concentration which can tune the electrical output according to the application. The systems described herein propose a new concept for self-sufficient energy harvesting that bridges biocatalysis and piezoelectricity, where the energy production is based on the piezoelectric effect triggered by enzymatic action rather than on the enzyme-driven electron transfer that governs biofuel cells. Although the electric output is too low yet to be considered an alternative for energy production, this technology opens the door to power small devices. We envision the utilization of this technology in such remote locations where mechanical energy is lacking but there are chemical energy reservoirs. We would like to acknowledge Marie-Curie Actions (NANOBIENER project), IKERBASQUE foundation for funding F.L.-G., and the support of COST Action CM1303 Systems Biocatalysis. We also acknowledge HERGAR foundation for the funding. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANORoyo, Patricia; Acevedo, Luis; Ferreira, Victor J.; García-Armingol, Tatiana; López-Sabirón, Ana M.; Ferreira, Germán;The energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANORoyo, Patricia; Acevedo, Luis; Ferreira, Victor J.; García-Armingol, Tatiana; López-Sabirón, Ana M.; Ferreira, Germán;The energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Editorial CSIC Authors: B. Arranz; I. Oteiza; E. Delgado; A. Gutiérrez;doi: 10.3989/ic.67523
handle: 10261/219463
El proyecto REVen “Rehabilitación energética de viviendas sociales, aplicando productos innovadores de ventana con marcado CE” (BIA2014-56650-JIN), tiene como objetivo realizar un análisis integral del impacto de la ventana en los aspectos relativos a eficiencia energética y calidad ambiental. Para caracterizar los flujos de energía y las condiciones ambientales internas se ha construido el Laboratorio REVen. Este artículo describe la construcción y la monitorización de este laboratorio analizando los datos de su primer año de funcionamiento. Los resultados permiten afirmar que se logra una mejora significativa del confort térmico obteniendo un ahorro de energía anual del 25 %.
Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 147 Powered bymore_vert Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Editorial CSIC Authors: B. Arranz; I. Oteiza; E. Delgado; A. Gutiérrez;doi: 10.3989/ic.67523
handle: 10261/219463
El proyecto REVen “Rehabilitación energética de viviendas sociales, aplicando productos innovadores de ventana con marcado CE” (BIA2014-56650-JIN), tiene como objetivo realizar un análisis integral del impacto de la ventana en los aspectos relativos a eficiencia energética y calidad ambiental. Para caracterizar los flujos de energía y las condiciones ambientales internas se ha construido el Laboratorio REVen. Este artículo describe la construcción y la monitorización de este laboratorio analizando los datos de su primer año de funcionamiento. Los resultados permiten afirmar que se logra una mejora significativa del confort térmico obteniendo un ahorro de energía anual del 25 %.
Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 147 Powered bymore_vert Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Jacobo Porteiro; Raquel Pérez-Orozco; David Patiño; José Luis Míguez;Considering recent environmental regulations, the need to adapt domestic biomass combustion systems to models that generate less emissions has gained relative importance. The present research proposes an analysis of the bed cooling effects on emission patterns, specifically focusing on the concentration, typology and morphological aspects of the released particles. The study was carried out by comparing the behaviour of a small-scale pilot plant with air stratification, with and without bed cooling. The results revealed an optimal behaviour of the facility with distributions of 30% primary-70% secondary air, accompanied by a significant decrease in emissions due to the reduction in the operating temperatures. More than 75% of the particles were retained in the bed on the cooled surfaces due to the effect of the prominent temperature gradient that was produced. Among the types of emitted particles (mostly with sizes below 0.1 μm), the presence of partial biomass degradation remnants was observed, representing three-quarters of the total collected matter. To a lesser extent, the presence of carbonaceous agglomerates was detected and usually in very compact clusters; however, in cases of high primary air supply, large amounts of immature soot were observed. Agencia Estatal de Investigación | Ref. RTI2018-100765-B-I00
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Jacobo Porteiro; Raquel Pérez-Orozco; David Patiño; José Luis Míguez;Considering recent environmental regulations, the need to adapt domestic biomass combustion systems to models that generate less emissions has gained relative importance. The present research proposes an analysis of the bed cooling effects on emission patterns, specifically focusing on the concentration, typology and morphological aspects of the released particles. The study was carried out by comparing the behaviour of a small-scale pilot plant with air stratification, with and without bed cooling. The results revealed an optimal behaviour of the facility with distributions of 30% primary-70% secondary air, accompanied by a significant decrease in emissions due to the reduction in the operating temperatures. More than 75% of the particles were retained in the bed on the cooled surfaces due to the effect of the prominent temperature gradient that was produced. Among the types of emitted particles (mostly with sizes below 0.1 μm), the presence of partial biomass degradation remnants was observed, representing three-quarters of the total collected matter. To a lesser extent, the presence of carbonaceous agglomerates was detected and usually in very compact clusters; however, in cases of high primary air supply, large amounts of immature soot were observed. Agencia Estatal de Investigación | Ref. RTI2018-100765-B-I00
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Authors: José A. Orosa; Ángel M. Costa; Diego Vergara; Feliciano Fraguela;There are different monitoring procedures in wind farms with two main objectives: (i) to improve energy production by the capability of the national electrical network and (ii) to reduce the stooped hours due to preventive and or corrective maintenance activities. In this sense, different sensors are employed to sample in real-time the working conditions of equipment, the electrical production and the weather conditions. Despite this, just the anemometer measurement can be related to the more important errors of interruption of power regulation and anemometer errors. Both errors are related to gusty winds and contribute to more than 33% of the cost of a wind farm. The present paper reports some mathematical relations between weather and maintenance but there are no extreme values of each variable that let us predict a near failure and its corresponding loss of working hours. To achieve this, statistical analysis identifies the relation between weather variables and errors and different models are obtained. What is more, due to the difficulty and economic implications involving the implementation of complex algorithms and techniques of artificial intelligence, it is still a challenge to optimize this process. Finally, the obtained results show a particular case study that can be extrapolated to other wind farms after different case studies to adjust the model to different weather regions, and serve as a useful tool for weather maintenance.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Authors: José A. Orosa; Ángel M. Costa; Diego Vergara; Feliciano Fraguela;There are different monitoring procedures in wind farms with two main objectives: (i) to improve energy production by the capability of the national electrical network and (ii) to reduce the stooped hours due to preventive and or corrective maintenance activities. In this sense, different sensors are employed to sample in real-time the working conditions of equipment, the electrical production and the weather conditions. Despite this, just the anemometer measurement can be related to the more important errors of interruption of power regulation and anemometer errors. Both errors are related to gusty winds and contribute to more than 33% of the cost of a wind farm. The present paper reports some mathematical relations between weather and maintenance but there are no extreme values of each variable that let us predict a near failure and its corresponding loss of working hours. To achieve this, statistical analysis identifies the relation between weather variables and errors and different models are obtained. What is more, due to the difficulty and economic implications involving the implementation of complex algorithms and techniques of artificial intelligence, it is still a challenge to optimize this process. Finally, the obtained results show a particular case study that can be extrapolated to other wind farms after different case studies to adjust the model to different weather regions, and serve as a useful tool for weather maintenance.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Carlos Morón; Daniel Ferrández; Pablo Saiz; Gabriela Vega; Jorge Díaz;doi: 10.3390/en10091298
The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Carlos Morón; Daniel Ferrández; Pablo Saiz; Gabriela Vega; Jorge Díaz;doi: 10.3390/en10091298
The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Roque Aguado; José-Luis Casteleiro-Roca; David Vera; José Luis Calvo-Rolle;handle: 10953/4667
[Abstract] This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign, the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory, with a mean absolute prediction error of only 0.134% by volume. Accordingly, the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas. Junta de Andalucía; 1381442 Xunta de Galicia; ED431G 2019/01 Ministerio de Universidades; FPU19/00930
Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Roque Aguado; José-Luis Casteleiro-Roca; David Vera; José Luis Calvo-Rolle;handle: 10953/4667
[Abstract] This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign, the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory, with a mean absolute prediction error of only 0.134% by volume. Accordingly, the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas. Junta de Andalucía; 1381442 Xunta de Galicia; ED431G 2019/01 Ministerio de Universidades; FPU19/00930
Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Marcos G. Alberti; Jaime C. Gálvez; Alejandro Enfedaque; Ana Carmona; Cristina Valverde; Gabriel Pardo;Construction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018Publisher:MDPI AG Marcos G. Alberti; Jaime C. Gálvez; Alejandro Enfedaque; Ana Carmona; Cristina Valverde; Gabriel Pardo;Construction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4765/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 SpainPublisher:American Chemical Society (ACS) Authors: Susana Velasco-Lozano; Mato Knez; Fernando López-Gallego;handle: 10261/186689
Sustainable electricity generation is one of the major current challenges for our society. In this context, the evolution of nanomaterials and nanotechnologies has enabled the fabrication of microscopic devices to produce clean energy from a great variety of renewable sources. To expand the possibilities of energy generation, we have designed and fabricated bioinorganic generators capable to produce electricity by conversion of chemical energy from renewable fuel sources. Unlike traditional generators, the systems described herein produce mechanical energy through enzyme-driven gas production which generates vibration and pressure that are thus converted into electricity by the action of a piezoelectric component properly integrated into the device. Our generators are able to produce an electric ernergy from different renewable sources like glucose, ethanol, and amino acids, attaining energy outputs around 250 nJ cm–2 and reaching maximum open-circuit voltages of up to 1 V. In addition, the produced energy can be easily regulated by adjusting both enzyme and fuel concentration which can tune the electrical output according to the application. The systems described herein propose a new concept for self-sufficient energy harvesting that bridges biocatalysis and piezoelectricity, where the energy production is based on the piezoelectric effect triggered by enzymatic action rather than on the enzyme-driven electron transfer that governs biofuel cells. Although the electric output is too low yet to be considered an alternative for energy production, this technology opens the door to power small devices. We envision the utilization of this technology in such remote locations where mechanical energy is lacking but there are chemical energy reservoirs. We would like to acknowledge Marie-Curie Actions (NANOBIENER project), IKERBASQUE foundation for funding F.L.-G., and the support of COST Action CM1303 Systems Biocatalysis. We also acknowledge HERGAR foundation for the funding. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 SpainPublisher:American Chemical Society (ACS) Authors: Susana Velasco-Lozano; Mato Knez; Fernando López-Gallego;handle: 10261/186689
Sustainable electricity generation is one of the major current challenges for our society. In this context, the evolution of nanomaterials and nanotechnologies has enabled the fabrication of microscopic devices to produce clean energy from a great variety of renewable sources. To expand the possibilities of energy generation, we have designed and fabricated bioinorganic generators capable to produce electricity by conversion of chemical energy from renewable fuel sources. Unlike traditional generators, the systems described herein produce mechanical energy through enzyme-driven gas production which generates vibration and pressure that are thus converted into electricity by the action of a piezoelectric component properly integrated into the device. Our generators are able to produce an electric ernergy from different renewable sources like glucose, ethanol, and amino acids, attaining energy outputs around 250 nJ cm–2 and reaching maximum open-circuit voltages of up to 1 V. In addition, the produced energy can be easily regulated by adjusting both enzyme and fuel concentration which can tune the electrical output according to the application. The systems described herein propose a new concept for self-sufficient energy harvesting that bridges biocatalysis and piezoelectricity, where the energy production is based on the piezoelectric effect triggered by enzymatic action rather than on the enzyme-driven electron transfer that governs biofuel cells. Although the electric output is too low yet to be considered an alternative for energy production, this technology opens the door to power small devices. We envision the utilization of this technology in such remote locations where mechanical energy is lacking but there are chemical energy reservoirs. We would like to acknowledge Marie-Curie Actions (NANOBIENER project), IKERBASQUE foundation for funding F.L.-G., and the support of COST Action CM1303 Systems Biocatalysis. We also acknowledge HERGAR foundation for the funding. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 20 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.7b00328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANORoyo, Patricia; Acevedo, Luis; Ferreira, Victor J.; García-Armingol, Tatiana; López-Sabirón, Ana M.; Ferreira, Germán;The energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANORoyo, Patricia; Acevedo, Luis; Ferreira, Victor J.; García-Armingol, Tatiana; López-Sabirón, Ana M.; Ferreira, Germán;The energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Editorial CSIC Authors: B. Arranz; I. Oteiza; E. Delgado; A. Gutiérrez;doi: 10.3989/ic.67523
handle: 10261/219463
El proyecto REVen “Rehabilitación energética de viviendas sociales, aplicando productos innovadores de ventana con marcado CE” (BIA2014-56650-JIN), tiene como objetivo realizar un análisis integral del impacto de la ventana en los aspectos relativos a eficiencia energética y calidad ambiental. Para caracterizar los flujos de energía y las condiciones ambientales internas se ha construido el Laboratorio REVen. Este artículo describe la construcción y la monitorización de este laboratorio analizando los datos de su primer año de funcionamiento. Los resultados permiten afirmar que se logra una mejora significativa del confort térmico obteniendo un ahorro de energía anual del 25 %.
Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 147 Powered bymore_vert Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Editorial CSIC Authors: B. Arranz; I. Oteiza; E. Delgado; A. Gutiérrez;doi: 10.3989/ic.67523
handle: 10261/219463
El proyecto REVen “Rehabilitación energética de viviendas sociales, aplicando productos innovadores de ventana con marcado CE” (BIA2014-56650-JIN), tiene como objetivo realizar un análisis integral del impacto de la ventana en los aspectos relativos a eficiencia energética y calidad ambiental. Para caracterizar los flujos de energía y las condiciones ambientales internas se ha construido el Laboratorio REVen. Este artículo describe la construcción y la monitorización de este laboratorio analizando los datos de su primer año de funcionamiento. Los resultados permiten afirmar que se logra una mejora significativa del confort térmico obteniendo un ahorro de energía anual del 25 %.
Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 147 Powered bymore_vert Informes de la Const... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3989/ic.67523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Jacobo Porteiro; Raquel Pérez-Orozco; David Patiño; José Luis Míguez;Considering recent environmental regulations, the need to adapt domestic biomass combustion systems to models that generate less emissions has gained relative importance. The present research proposes an analysis of the bed cooling effects on emission patterns, specifically focusing on the concentration, typology and morphological aspects of the released particles. The study was carried out by comparing the behaviour of a small-scale pilot plant with air stratification, with and without bed cooling. The results revealed an optimal behaviour of the facility with distributions of 30% primary-70% secondary air, accompanied by a significant decrease in emissions due to the reduction in the operating temperatures. More than 75% of the particles were retained in the bed on the cooled surfaces due to the effect of the prominent temperature gradient that was produced. Among the types of emitted particles (mostly with sizes below 0.1 μm), the presence of partial biomass degradation remnants was observed, representing three-quarters of the total collected matter. To a lesser extent, the presence of carbonaceous agglomerates was detected and usually in very compact clusters; however, in cases of high primary air supply, large amounts of immature soot were observed. Agencia Estatal de Investigación | Ref. RTI2018-100765-B-I00
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Jacobo Porteiro; Raquel Pérez-Orozco; David Patiño; José Luis Míguez;Considering recent environmental regulations, the need to adapt domestic biomass combustion systems to models that generate less emissions has gained relative importance. The present research proposes an analysis of the bed cooling effects on emission patterns, specifically focusing on the concentration, typology and morphological aspects of the released particles. The study was carried out by comparing the behaviour of a small-scale pilot plant with air stratification, with and without bed cooling. The results revealed an optimal behaviour of the facility with distributions of 30% primary-70% secondary air, accompanied by a significant decrease in emissions due to the reduction in the operating temperatures. More than 75% of the particles were retained in the bed on the cooled surfaces due to the effect of the prominent temperature gradient that was produced. Among the types of emitted particles (mostly with sizes below 0.1 μm), the presence of partial biomass degradation remnants was observed, representing three-quarters of the total collected matter. To a lesser extent, the presence of carbonaceous agglomerates was detected and usually in very compact clusters; however, in cases of high primary air supply, large amounts of immature soot were observed. Agencia Estatal de Investigación | Ref. RTI2018-100765-B-I00
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Authors: José A. Orosa; Ángel M. Costa; Diego Vergara; Feliciano Fraguela;There are different monitoring procedures in wind farms with two main objectives: (i) to improve energy production by the capability of the national electrical network and (ii) to reduce the stooped hours due to preventive and or corrective maintenance activities. In this sense, different sensors are employed to sample in real-time the working conditions of equipment, the electrical production and the weather conditions. Despite this, just the anemometer measurement can be related to the more important errors of interruption of power regulation and anemometer errors. Both errors are related to gusty winds and contribute to more than 33% of the cost of a wind farm. The present paper reports some mathematical relations between weather and maintenance but there are no extreme values of each variable that let us predict a near failure and its corresponding loss of working hours. To achieve this, statistical analysis identifies the relation between weather variables and errors and different models are obtained. What is more, due to the difficulty and economic implications involving the implementation of complex algorithms and techniques of artificial intelligence, it is still a challenge to optimize this process. Finally, the obtained results show a particular case study that can be extrapolated to other wind farms after different case studies to adjust the model to different weather regions, and serve as a useful tool for weather maintenance.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SpainPublisher:MDPI AG Authors: José A. Orosa; Ángel M. Costa; Diego Vergara; Feliciano Fraguela;There are different monitoring procedures in wind farms with two main objectives: (i) to improve energy production by the capability of the national electrical network and (ii) to reduce the stooped hours due to preventive and or corrective maintenance activities. In this sense, different sensors are employed to sample in real-time the working conditions of equipment, the electrical production and the weather conditions. Despite this, just the anemometer measurement can be related to the more important errors of interruption of power regulation and anemometer errors. Both errors are related to gusty winds and contribute to more than 33% of the cost of a wind farm. The present paper reports some mathematical relations between weather and maintenance but there are no extreme values of each variable that let us predict a near failure and its corresponding loss of working hours. To achieve this, statistical analysis identifies the relation between weather variables and errors and different models are obtained. What is more, due to the difficulty and economic implications involving the implementation of complex algorithms and techniques of artificial intelligence, it is still a challenge to optimize this process. Finally, the obtained results show a particular case study that can be extrapolated to other wind farms after different case studies to adjust the model to different weather regions, and serve as a useful tool for weather maintenance.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/1/40/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21010040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:FCT | SFRH/BD/144562/2019, FCT | CICECO-Aveiro Institute o...FCT| SFRH/BD/144562/2019 ,FCT| CICECO-Aveiro Institute of MaterialsNovais, Rui M.; Carvalheiras, João; Senff, Luciano; Lacasta Palacio, Ana María; Rodríguez Cantalapiedra, Inma; Giró Paloma, Jessica; Seabra, Maria Paula; Labrincha Batista, João António;handle: 2117/180828 , 20.500.12251/1956
This work evaluates, for the first time, the possibility of producing multifunctional alkali-activated composites combining ultra-low density, low thermal conductivity, high acoustic absorption, and good moisture buffering capacity. The composites were prepared using cork as a lightweight aggregate. This novel material might promote energy savings and tackle the CO2 emissions of the building sector, while simultaneously improve the comfort for inhabitants (e.g. humidity levels regulation and sound pollution reduction). The composites apparent density (as low as 168 kg/m3) and thermal conductivity (as low as 68 mW/m K) are amongst the lowest ever reported for alkali-activated materials (AAM) composites and foams, while their sound absorption ability is comparable to the best performing AAM foams reported to date, but in addition these eco-friendly composites also show good ability to passively adjust the humidity levels inside buildings. The multifunctional properties shown by the cork – AAM composites set them apart from other conventional building materials and might contribute to the global sustainability of the construction sector. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Carlos Morón; Daniel Ferrández; Pablo Saiz; Gabriela Vega; Jorge Díaz;doi: 10.3390/en10091298
The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Carlos Morón; Daniel Ferrández; Pablo Saiz; Gabriela Vega; Jorge Díaz;doi: 10.3390/en10091298
The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1298/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Roque Aguado; José-Luis Casteleiro-Roca; David Vera; José Luis Calvo-Rolle;handle: 10953/4667
[Abstract] This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign, the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory, with a mean absolute prediction error of only 0.134% by volume. Accordingly, the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas. Junta de Andalucía; 1381442 Xunta de Galicia; ED431G 2019/01 Ministerio de Universidades; FPU19/00930
Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Roque Aguado; José-Luis Casteleiro-Roca; David Vera; José Luis Calvo-Rolle;handle: 10953/4667
[Abstract] This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign, the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory, with a mean absolute prediction error of only 0.134% by volume. Accordingly, the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas. Junta de Andalucía; 1381442 Xunta de Galicia; ED431G 2019/01 Ministerio de Universidades; FPU19/00930
Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositorio instituc... arrow_drop_down Repositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2022License: CC BY NC NDData sources: Repositorio da Universidade da CoruñaRepositorio institucional de producción científica de la Universidad de JaénArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.04.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu