- home
- Advanced Search
- Energy Research
- ES
- Bioresource Technology
- Energy Research
- ES
- Bioresource Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV A.F. Chica; M.C. Gutiérrez; María Ángeles Martín; Fátima Vargas; José A. Siles;pmid: 27017127
Although recent research has demonstrated that waste orange peel (WOP) is a potentially valuable resource that can be transformed into high value products, heat generation, biomethanisation and composting might be considered the most feasible alternatives in terms of yield. This study revealed that WOP can be successfully valorised through combustion. However, a previous drying step, which generates hazardous wastewater, is required and harmful NOx are emitted with the flue gases. In contrast, a high yield of renewable methane (280LSTPCH4/kg added COD, chemical oxygen demand) and an organic amendment can be obtained through the thermophilic biomethanisation of WOP following the removal of valuable essential oils from the peel. Co-composting of WOP combined at different proportions (17-83%) with the organic fraction of municipal solid waste (OFMSW) was also demonstrated to be suitable. Moreover, a 37% reduction in odour generation was observed in co-composting of WOP compared to single composting of OFMSW.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.03.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.03.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | BioRECO2VEREC| BioRECO2VERAuthors: Laura Rovira-Alsina; M. Dolors Balaguer; Sebastià Puig;pmid: 33260066
Renewable energies will represent an increasing share of the electricity supply, while flue and gasification-derived gases can be a promising CO2 feedstock with a heat load. In this study, microbial electrosynthesis of organic compounds from CO2 at high temperature was proposed as an alternative for valorising energy surplus and decarbonizing the economy. The unremitting fluctuation of renewable energy sources was assessed using two bioreactors at 50 °C, under circumstances of continuous and intermittent power supply (ON-OFF; 8-16 h), simulating an off-grid photovoltaic system. Results highlighted that maximum acetate production rate (43.27 g m-2 d-1) and columbic efficiency (98%) were achieved by working with an intermittent energy supply, while current density was reduced three times. This boosted the production of acetate per unit of electricity provided up to 138 g kWh-1 and reinforced the robustness of the technology by showing resilience to tolerate perturbations and returning to its initial state.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 51 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Giorgio Mannina; Dario Presti; Gabriela Montiel-Jarillo; María Eugenia Suárez-Ojeda;pmid: 30884455
A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio acid lauric to biomass of 2:1 and 3 h of contact time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Montserrat Pérez; J. Fernández; L.I. Romero;pmid: 18255282
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV L.F. Calvo; A.I. García; Marta Otero; María Victoria Gil; Antonio Morán;pmid: 22297044
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, SpainPublisher:Elsevier BV Publicly fundedFunded by:SFI | Hybrid Bio-Solar Reactors...SFI| Hybrid Bio-Solar Reactors for wastewater treatment and CO2 recyclingAuthors: Puig Broch, Sebastià; Vassilev, Igor; Dessì, Paolo; Kokko, Marika;pmid: 35104648
Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Gonzalez Fernandez, Cristina; Sialve, Bruno; Molinuevo-Salces, Beatriz;pmid: 26454349
Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 156 citations 156 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: María C. Veiga; Ánxela Fernández-Naveira; Christian Kennes;pmid: 28803105
Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO2, H2) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Pablo G. del Río; Beatriz Gullón; Aloia Romaní; Gil Garrote;pmid: 34293622
Microwave hydrothermal treatment (MHT), a novel advanced technology, was proposed for the fractionation of Paulownia wood (PW) at temperatures ranging 200-230 °C and residence times of 0-50 min, corresponding to severities of 2.93-4.70. This procedure allowed 80% of xylan recovery as xylooligosaccharides and an average of 95% cellulose recovery in the pretreated PW biomass, showing the selectivity of the treatment, that was also compared to conduction-convection heating autohydrolysis. Finally, a kinetic model was proposed for the prediction of PW fractionation using MHT, with the ultimate goal of being applied to a wide range of feedstocks and minimizing the number of parameters used. For that, two strategies were approached, allowing the reduction of 80 to 34 parameters, without significant influence in the kinetic fitting. To the best of our knowledge, this is the first kinetic modelization of MHT of PW, taking into account all the lignocellulosic fractions.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: L´opez-Rosales, Lorenzo; Lopez-García, Paula; Benyachou, Mohammed; Molina-Miras, Alejandro; +4 AuthorsL´opez-Rosales, Lorenzo; Lopez-García, Paula; Benyachou, Mohammed; Molina-Miras, Alejandro; Gallardo-Rodríguez, Juan José; Cerón-García, María del Carmen; Sanchez Miron, Asterio; García-Camacho, Francisco;pmid: 35724909
The low tolerance of marine microalgae to ammonium and hyposalinity limits their use in urban wastewater (UWW) treatments. In this study, using the marine microalga Amphidinium carterae, it is demonstrated for the first time that this obstacle can be overcome by introducing a zeolite-based adsorption step to obtain a tolerable UWW stream. The maximum ammonium adsorption capacities measured in the natural zeolite used are among the highest reported. The microalga grows satisfactorily in mixtures of zeolite-treated UWW and seawater at a wide range of proportions, both with and without adjusting the salinity, as long as the ammonium concentration is below the threshold tolerated by the microalgae (6.3 mg L-1). A proof of concept performed in 10-L bubble column photobioreactors with different culture strategies, including medium recycling, showed an enhanced biomass yield relative to a control with no UWW. No noticeable effect was observed on the production of specialty metabolites.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV A.F. Chica; M.C. Gutiérrez; María Ángeles Martín; Fátima Vargas; José A. Siles;pmid: 27017127
Although recent research has demonstrated that waste orange peel (WOP) is a potentially valuable resource that can be transformed into high value products, heat generation, biomethanisation and composting might be considered the most feasible alternatives in terms of yield. This study revealed that WOP can be successfully valorised through combustion. However, a previous drying step, which generates hazardous wastewater, is required and harmful NOx are emitted with the flue gases. In contrast, a high yield of renewable methane (280LSTPCH4/kg added COD, chemical oxygen demand) and an organic amendment can be obtained through the thermophilic biomethanisation of WOP following the removal of valuable essential oils from the peel. Co-composting of WOP combined at different proportions (17-83%) with the organic fraction of municipal solid waste (OFMSW) was also demonstrated to be suitable. Moreover, a 37% reduction in odour generation was observed in co-composting of WOP compared to single composting of OFMSW.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.03.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.03.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | BioRECO2VEREC| BioRECO2VERAuthors: Laura Rovira-Alsina; M. Dolors Balaguer; Sebastià Puig;pmid: 33260066
Renewable energies will represent an increasing share of the electricity supply, while flue and gasification-derived gases can be a promising CO2 feedstock with a heat load. In this study, microbial electrosynthesis of organic compounds from CO2 at high temperature was proposed as an alternative for valorising energy surplus and decarbonizing the economy. The unremitting fluctuation of renewable energy sources was assessed using two bioreactors at 50 °C, under circumstances of continuous and intermittent power supply (ON-OFF; 8-16 h), simulating an off-grid photovoltaic system. Results highlighted that maximum acetate production rate (43.27 g m-2 d-1) and columbic efficiency (98%) were achieved by working with an intermittent energy supply, while current density was reduced three times. This boosted the production of acetate per unit of electricity provided up to 138 g kWh-1 and reinforced the robustness of the technology by showing resilience to tolerate perturbations and returning to its initial state.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 51 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Giorgio Mannina; Dario Presti; Gabriela Montiel-Jarillo; María Eugenia Suárez-Ojeda;pmid: 30884455
A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio acid lauric to biomass of 2:1 and 3 h of contact time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Montserrat Pérez; J. Fernández; L.I. Romero;pmid: 18255282
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV L.F. Calvo; A.I. García; Marta Otero; María Victoria Gil; Antonio Morán;pmid: 22297044
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, SpainPublisher:Elsevier BV Publicly fundedFunded by:SFI | Hybrid Bio-Solar Reactors...SFI| Hybrid Bio-Solar Reactors for wastewater treatment and CO2 recyclingAuthors: Puig Broch, Sebastià; Vassilev, Igor; Dessì, Paolo; Kokko, Marika;pmid: 35104648
Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Gonzalez Fernandez, Cristina; Sialve, Bruno; Molinuevo-Salces, Beatriz;pmid: 26454349
Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 156 citations 156 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: María C. Veiga; Ánxela Fernández-Naveira; Christian Kennes;pmid: 28803105
Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO2, H2) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Pablo G. del Río; Beatriz Gullón; Aloia Romaní; Gil Garrote;pmid: 34293622
Microwave hydrothermal treatment (MHT), a novel advanced technology, was proposed for the fractionation of Paulownia wood (PW) at temperatures ranging 200-230 °C and residence times of 0-50 min, corresponding to severities of 2.93-4.70. This procedure allowed 80% of xylan recovery as xylooligosaccharides and an average of 95% cellulose recovery in the pretreated PW biomass, showing the selectivity of the treatment, that was also compared to conduction-convection heating autohydrolysis. Finally, a kinetic model was proposed for the prediction of PW fractionation using MHT, with the ultimate goal of being applied to a wide range of feedstocks and minimizing the number of parameters used. For that, two strategies were approached, allowing the reduction of 80 to 34 parameters, without significant influence in the kinetic fitting. To the best of our knowledge, this is the first kinetic modelization of MHT of PW, taking into account all the lignocellulosic fractions.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: L´opez-Rosales, Lorenzo; Lopez-García, Paula; Benyachou, Mohammed; Molina-Miras, Alejandro; +4 AuthorsL´opez-Rosales, Lorenzo; Lopez-García, Paula; Benyachou, Mohammed; Molina-Miras, Alejandro; Gallardo-Rodríguez, Juan José; Cerón-García, María del Carmen; Sanchez Miron, Asterio; García-Camacho, Francisco;pmid: 35724909
The low tolerance of marine microalgae to ammonium and hyposalinity limits their use in urban wastewater (UWW) treatments. In this study, using the marine microalga Amphidinium carterae, it is demonstrated for the first time that this obstacle can be overcome by introducing a zeolite-based adsorption step to obtain a tolerable UWW stream. The maximum ammonium adsorption capacities measured in the natural zeolite used are among the highest reported. The microalga grows satisfactorily in mixtures of zeolite-treated UWW and seawater at a wide range of proportions, both with and without adjusting the salinity, as long as the ammonium concentration is below the threshold tolerated by the microalgae (6.3 mg L-1). A proof of concept performed in 10-L bubble column photobioreactors with different culture strategies, including medium recycling, showed an enhanced biomass yield relative to a control with no UWW. No noticeable effect was observed on the production of specialty metabolites.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu