- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- DE
- EU
- BE
- English
- Energy Research
- 2. Zero hunger
- DE
- EU
- BE
- English
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Mirschel, Wilfried; Meier, Kristin; Lemke, Andreas;doi: 10.4228/zalf.dk.140
Detailed measurements on soil, plant and atmosphere are required for the development and validation of crop growth and agroecosystem models. These measurements should be available with a high temporal resolution. With the aim of creating a growth model for winter wheat, an experiment with winter wheat under integrated cultivation conditions was carried out at the intensive experimental field of the Müncheberg Research Centre for Soil Fertility, Germany, between 1979 and 1981, both with and without irrigation. Field chambers were used for daily measurements of the CO2 balance of the crop stand. The daily evaporation was measured with two different evaporation pans. The different biomass components of the winter wheat crop stand were measured in weekly intervals from April to harvest in July/August. The different biomass components were analysed in the laboratory concerning their carbon, nitrogen, phosphorus and potassium content. Based on this coherent data set, the growth model TRITSIM for winter wheat was developed at the Müncheberg Research Centre for Soil Fertility in the 1980s. TRITSIM was incorporated into the complex agroecosystem model AGROSIM-WHEAT of the Research Institute of Plant Protection Eberswalde, Germany, for the identification of optimal plant protection measures under practical field conditions. The data set presented here can also be the basis for the verification and validation of further winter wheat growth and/or agroecosystem models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 21 Sep 2021 SpainPublisher:Dryad Funded by:EC | Gradual_ChangeEC| Gradual_ChangeSmith, Linnea C; Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; Lochner, Alfred; Jones, Arwyn; Bastida, Felipe; Patoine, Guillaume; Reitz, Thomas; Buscot, François; Rillig, Matthias; Heintz-Buschart, Anna; Lehmann, Anika; Guerra, Carlos;handle: 10261/286145
The aim of this study was to quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types. Location: Europe Time period: 2018 Major taxa studied: Microbial community (fungi and bacteria) We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Climate and soil data were obtained from previous LUCAS surveys and online databases. Structural equation modeling (SEM) was used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass. Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands. Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in coming management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change. [Methods] Soil samples were collected during the 2018 LUCAS soil sampling campaign. Soil chemical and physical properties were measured at the Joint Research Centre in Ispra, Italy (Orgiazzi et al., 2018). Soil microbial respiration and biomass, as well as water content and water holding capacity, were measured in the Eisenhauer lab of the German Centre for Integrative Biodiversity Research. Fungi/Bacteria was measured by fatty acid analysis by Felipe Bastida at CEBAS CSIC. Climate and geographical data were harvested from various databases, which are listed in Appendix 1 (data sources) of the associated paper. For more details on the soil sampling and physical and chemical properties, see: Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140-153. https://doi.org/10.1111/ejss.12499 For more details on the measurements of soil microbial respiration and biomass, fatty acids, and water holding capacity, see the supplementary methods of the associated paper (Appendix 2). [Usage Notes] Fatty acid analysis was performed for a subset of 267 samples. Water holding capacity and associated measurements of basal respiration was analyzed in a subset of 100 samples. The samples that were not in these subsets have NA values for the columns associated with these measurements. In order to protect the precise locations of the LUCAS sampling sites, latitude and longitude values could not be given. The approximate location of each sampling site is instead described by the NUTS3 region. If you wish to replicate the structural equation modeling described in the paper, for which latitude is required, please get in touch. A description of each column is available in the associated metadata file. Deutsche Forschungsgemeinschaft, Award: FZT 118-202548816. European Research Council, Award: 694368. European Commission. Directorate-General for the Environment. Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie. Eurostat. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;doi: 10.4228/zalf.dk.107
We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 23 Jun 2020Publisher:CRC/TR32 Database (TR32DB) Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerd; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl;doi: 10.5880/tr32db.39
A collection of field data from four agricultural sites in the Rur catchment in Western Germany collected in the frame of the Transregional Collaborative Research Centre 32 “Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation” (TR32). The dataset includes data on vegetation (states and fluxes), weather, soil, and agricultural management. Vegetation-related data comprises fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content, and carbon-, energy- and water-fluxes for a variety of agricultural plants. In addition, masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop are included. Data on agricultural management includes sowing and harvest dates, and information on cultivation, fertilization and agrochemicals. The dataset also includes gap-filled weather data and soil parameters (particle size distributions, carbon and nitrogen contents). This data can be useful for development and validation of remote sensing products. A detailed description of the dataset can be found in Reichenau et al. (2020).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 01 Aug 2018Publisher:Dryad Nurmi, Niina O.; Hohmann, Gottfried; Goldstone, Lucas G.; Deschner, Tobias; Schülke, Oliver;Humans share an extraordinary degree of sociality with other primates, calling for comparative work into the evolutionary drivers of the variation in social engagement observed between species. Of particular interest is the contrast between the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), the latter exhibiting increased female gregariousness, more tolerant relationships, and elaborate behavioral adaptations for conflict resolution. Here we test predictions from three socio-ecological hypotheses regarding the evolution of these traits using data on wild bonobos at LuiKotale, Democratic Republic of Congo. Focusing on the behavior of co-feeding females and controlling for variation in characteristics of the feeding patch, food intake rate moderately increased while feeding effort decreased with female dominance rank, indicating that females engaged in competitive exclusion from high quality food resources. However, these rank effects did not translate into variation in energy balance, as measured from urinary C-peptide levels. Instead, energy balance varied independent of female rank with the proportion of fruit in the diet. Together with the observation that females join forces in conflicts with males, our results support the hypothesis that predicts that females trade off feeding opportunities for safety against male aggression. The key to a full understanding of variation in social structure may be an integrated view of cooperation and competition over access to the key resources food and mates, both within and between the sexes. main_pan_analysis_II_intake_poisson_script_07022017R script for analysing food intake using a GLMMMASTER_analyses_II_R_file_intake_fFile containing the variables for the GLMM on food intake, analysed in RMAIN_pan_analysis_III_movement_script_26092016R script for analysing movement probability in focal trees using GLMMMASTER_analyses_III_R_file_movement_fFile containing the variables to analyse movement probability with a GLMM in Rmain_ucp_model_script_21022018_seasonality_update_with_feedscansR script to analyse variation in urinary C-peptide in a LMMmain_ucp_model_data_r_2018_seasonality_update_with_feed_scansFile containing the variables to analyse variation in urinary C-peptide using an LMM in R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 20 Jul 2021Publisher:Dryad Riechers, Maraja; Balázsi, Ágnes; Engler, John-Oliver; Shumi, Girma; Fischer, Joern;Data collection Preparation for our quantitative survey included extensive theoretical and literature studies on relational values and human-nature relationships. Building upon prior empirical work in the region (see e.g. (Balázsi et al., 2019; Hartel et al., 2016; Riechers et al., 2019) the questionnaire development included two focus groups with laypersons to improve structure and wording of the questionnaire and a pilot study with n = 20. The questionnaire contained parts on (1) utilisation of nature (Visiting frequency of natural areas in the vicinity from “daily” to “never”; distance travelled to these places from “up to 1km” to “over 10km”, use of different natural products such as water, wood, decorative material from “always” to “never”) (2) attitudes towards nature and nature conservation (importance from “very important” to “not important” of the conservation of specific natural attributes in the landscape), (3) relational, intrinsic and instrumental values and (4) socio-demographic information (see Supplementary Material S1 for the full questionnaire). In our study we focused on nine relational values that were seen as important from our prior research, instrumental and intrinsic values. An overview of the values used in this paper and their description can be found in Table 1. Data were collected through face-to-face surveys, within randomly chosen villages within the focal landscapes. We used proportionate sampling based on the population density of the villages in the focal landscapes. Within the villages the streets and households were sampled randomly. Surveys were conducted on various days of the week. After a second unsuccessful try, selected households were marked as dropouts. To decrease the dropout rate we did not randomly select respondents within a given household. All respondents were asked for an oral consent to participate in this study, as a personal signature was deemed to create discomfort and increase drop-out rates, especially in Romania. Data were collected between April and July 2017. This resulted in a total sample size of n = 819 across 52 villages (Romania n = 22, Germany n = 30). The ethics approval of this research was granted by the Leuphana University. Data analysis Exploratory factor analysis Our relational value data frame had a size of N = 819 observations of 18 variables. We imputed missing data with the method of predictive mean matching. Cronbach’s α for these variables was 0.83, while Kaiser-Meyer-Olkin’s measure of sampling adequacy was 0.93, well above the recommended value of 0.6, Bartlett’s test of sphericity was significant (χ² (153) = 5583.0, p < .001). All of these diagnostics suggest reasonable factorability. We considered three, four and five-factor models using oblimin rotation and a minimum residual factoring method. Associated scree plots and fit statistics indicated that the four-factor model was sufficient (RMSEA = 0.071, Tucker-Lewis-Index = 0.885). The four factors explained 29%, 7%, 5% and 4% of the variance respectively for a total of 45%. We refrained from removing items with factor loadings <0.4 because of our sample size of well above 300 (Stevens, 2002 :395). We provide the full loadings matrix in Table 3. We created composite scores for each factor by adding the scores of the items loading onto each factor for subsequent regression analysis. Candidate modeling We modelled the response of the three latent factors to a set of socio-demographic variables using beta regression models (Cribari-Nieto and Zeileis, 2010; Grün et al., 2012) on the latent factor scores that we transformed to the open standard unit interval (0, 1). The transformation applied was the one recommended by Smithson and Verkuilen (Smithson and Verkuilen, 2006), so that y’ = (y × (n – 1) + 0.5) / n where y is the data of length n. We based the set of candidate models on grouping explanatory variables into three categories: personal characteristics of the respondent (‘P’: gender, age), nature-based variables (‘N’: distance travelled, attitude towards conservation, visiting frequency, frequency of use of natural products) and focal landscape (‘L’). We constructed the following set of eight candidate models, which may be seen as our hypotheses regarding what variables might explain the latent factor scores observed: Null, N, P, L, N + P, N + L, L + P, N + P + L. We based model selection on AICc values and used the full average method where model averaging was required (Grueber et al., 2011; Nakagawa and Freckleton, 2011). We conducted our analyses using the R programming language (R Core Team 2019). We present the coefficients of the best-fitting models for each latent factor in Tables 4 and 5 and in the supplementary tables A1-A4. Relational values recently emerged as a concept to comprehensively understand and communicate the many values of nature. Relational values can be defined as preferences and principles about human-nature relationships and focus both on human-nature connections, as well as human-human connections. Here, drawing on 819 face-to-face questionnaires, we analysed relational, intrinsic and instrumental values across a total of six agricultural landscapes in Transylvania (Romania) and Lower Saxony (Germany). The landscapes described a gradient of land use intensity, within and across the countries. Our results suggest a bundling of values into four groups: those concerned with individual cognition (including intrinsic values), those that focus on nature as a place for social interaction and relaxation, those that capture cultural identity and spiritual values and one bundle that only includes instrumental values. These different values, in turn, were strongly related to (i) respondents’ attitudes towards environmental conservation and the (ii) frequency with which respondents used nature as a resource. Instrumental values have the tendency to be inversely related with relational values and were found to increase with the land use intensity of the focal landscapes. Data has been anonymised.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j3tx95xdx&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j3tx95xdx&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Presentation 2022Publisher:Zenodo Ferrer, Manuel; Rodá, Sergi; Chow, Jennifer; Müller, Markus; Klement, Tobias; Molina-Espeja, Patricia;In the context of our project, we organised a webinar at which almost 200 participants assisted. It was aimed at everyone who cares about a greener and more sustainable future. The development of sustainable and resource-saving processes is a major focus of R&D&I work, also supported heavily by the European Commission as part of the Green Deal and the sustainability efforts. In this context, biotechnology is already acting as a facilitator to achieve a circular economy and a bioeconomy. We aim to achieve these goals with the identification, optimisation, production and application of innovative enzymes to support the transformation of various industrial sectors and their consumer products. In this webinar, we wanted to present the competences and topics we acquire or work on in FuturEnzyme to an interested international audience. With this CLIB Forum event, we want to emphasise and promote the need for collaboration between researchers, entrepreneurs, and manufacturers for a greener and more sustainable future. Furthermore, our webinar was also of interest for policy makers, funding bodies, investors and consumers. The FuturEnzyme project partners CSIC, Barcelona Supercomputing Center and the University of Hamburg presented their activities in the project and beyond to a wide range audience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7057525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 138visibility views 138 download downloads 151 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7057525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Mirschel, Wilfried; Meier, Kristin; Lemke, Andreas;doi: 10.4228/zalf.dk.140
Detailed measurements on soil, plant and atmosphere are required for the development and validation of crop growth and agroecosystem models. These measurements should be available with a high temporal resolution. With the aim of creating a growth model for winter wheat, an experiment with winter wheat under integrated cultivation conditions was carried out at the intensive experimental field of the Müncheberg Research Centre for Soil Fertility, Germany, between 1979 and 1981, both with and without irrigation. Field chambers were used for daily measurements of the CO2 balance of the crop stand. The daily evaporation was measured with two different evaporation pans. The different biomass components of the winter wheat crop stand were measured in weekly intervals from April to harvest in July/August. The different biomass components were analysed in the laboratory concerning their carbon, nitrogen, phosphorus and potassium content. Based on this coherent data set, the growth model TRITSIM for winter wheat was developed at the Müncheberg Research Centre for Soil Fertility in the 1980s. TRITSIM was incorporated into the complex agroecosystem model AGROSIM-WHEAT of the Research Institute of Plant Protection Eberswalde, Germany, for the identification of optimal plant protection measures under practical field conditions. The data set presented here can also be the basis for the verification and validation of further winter wheat growth and/or agroecosystem models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 21 Sep 2021 SpainPublisher:Dryad Funded by:EC | Gradual_ChangeEC| Gradual_ChangeSmith, Linnea C; Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; Lochner, Alfred; Jones, Arwyn; Bastida, Felipe; Patoine, Guillaume; Reitz, Thomas; Buscot, François; Rillig, Matthias; Heintz-Buschart, Anna; Lehmann, Anika; Guerra, Carlos;handle: 10261/286145
The aim of this study was to quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types. Location: Europe Time period: 2018 Major taxa studied: Microbial community (fungi and bacteria) We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Climate and soil data were obtained from previous LUCAS surveys and online databases. Structural equation modeling (SEM) was used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass. Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands. Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in coming management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change. [Methods] Soil samples were collected during the 2018 LUCAS soil sampling campaign. Soil chemical and physical properties were measured at the Joint Research Centre in Ispra, Italy (Orgiazzi et al., 2018). Soil microbial respiration and biomass, as well as water content and water holding capacity, were measured in the Eisenhauer lab of the German Centre for Integrative Biodiversity Research. Fungi/Bacteria was measured by fatty acid analysis by Felipe Bastida at CEBAS CSIC. Climate and geographical data were harvested from various databases, which are listed in Appendix 1 (data sources) of the associated paper. For more details on the soil sampling and physical and chemical properties, see: Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140-153. https://doi.org/10.1111/ejss.12499 For more details on the measurements of soil microbial respiration and biomass, fatty acids, and water holding capacity, see the supplementary methods of the associated paper (Appendix 2). [Usage Notes] Fatty acid analysis was performed for a subset of 267 samples. Water holding capacity and associated measurements of basal respiration was analyzed in a subset of 100 samples. The samples that were not in these subsets have NA values for the columns associated with these measurements. In order to protect the precise locations of the LUCAS sampling sites, latitude and longitude values could not be given. The approximate location of each sampling site is instead described by the NUTS3 region. If you wish to replicate the structural equation modeling described in the paper, for which latitude is required, please get in touch. A description of each column is available in the associated metadata file. Deutsche Forschungsgemeinschaft, Award: FZT 118-202548816. European Research Council, Award: 694368. European Commission. Directorate-General for the Environment. Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie. Eurostat. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg (Germany) Authors: Uckert, Götz; Hoffmann, Harry; Fasse, Anja; Gervas, Ewald Emil;doi: 10.4228/zalf.dk.107
We provide a dataset from a household survey in Mpanda region in Western Tanzania (N = 137) that was conducted in 2011. Household heads (or replacements) were interviewed. The topics addressed covered a broad range of socio-economic data and including, among others, household information (number of household members, age, sex, religion etc.), agricultural production (e.g. crops produced and livestock owned) including number and size of plots, income generation, energy access and owned assets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4228/zalf.dk.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 23 Jun 2020Publisher:CRC/TR32 Database (TR32DB) Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerd; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl;doi: 10.5880/tr32db.39
A collection of field data from four agricultural sites in the Rur catchment in Western Germany collected in the frame of the Transregional Collaborative Research Centre 32 “Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation” (TR32). The dataset includes data on vegetation (states and fluxes), weather, soil, and agricultural management. Vegetation-related data comprises fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content, and carbon-, energy- and water-fluxes for a variety of agricultural plants. In addition, masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop are included. Data on agricultural management includes sowing and harvest dates, and information on cultivation, fertilization and agrochemicals. The dataset also includes gap-filled weather data and soil parameters (particle size distributions, carbon and nitrogen contents). This data can be useful for development and validation of remote sensing products. A detailed description of the dataset can be found in Reichenau et al. (2020).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 01 Aug 2018Publisher:Dryad Nurmi, Niina O.; Hohmann, Gottfried; Goldstone, Lucas G.; Deschner, Tobias; Schülke, Oliver;Humans share an extraordinary degree of sociality with other primates, calling for comparative work into the evolutionary drivers of the variation in social engagement observed between species. Of particular interest is the contrast between the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), the latter exhibiting increased female gregariousness, more tolerant relationships, and elaborate behavioral adaptations for conflict resolution. Here we test predictions from three socio-ecological hypotheses regarding the evolution of these traits using data on wild bonobos at LuiKotale, Democratic Republic of Congo. Focusing on the behavior of co-feeding females and controlling for variation in characteristics of the feeding patch, food intake rate moderately increased while feeding effort decreased with female dominance rank, indicating that females engaged in competitive exclusion from high quality food resources. However, these rank effects did not translate into variation in energy balance, as measured from urinary C-peptide levels. Instead, energy balance varied independent of female rank with the proportion of fruit in the diet. Together with the observation that females join forces in conflicts with males, our results support the hypothesis that predicts that females trade off feeding opportunities for safety against male aggression. The key to a full understanding of variation in social structure may be an integrated view of cooperation and competition over access to the key resources food and mates, both within and between the sexes. main_pan_analysis_II_intake_poisson_script_07022017R script for analysing food intake using a GLMMMASTER_analyses_II_R_file_intake_fFile containing the variables for the GLMM on food intake, analysed in RMAIN_pan_analysis_III_movement_script_26092016R script for analysing movement probability in focal trees using GLMMMASTER_analyses_III_R_file_movement_fFile containing the variables to analyse movement probability with a GLMM in Rmain_ucp_model_script_21022018_seasonality_update_with_feedscansR script to analyse variation in urinary C-peptide in a LMMmain_ucp_model_data_r_2018_seasonality_update_with_feed_scansFile containing the variables to analyse variation in urinary C-peptide using an LMM in R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 20 Jul 2021Publisher:Dryad Riechers, Maraja; Balázsi, Ágnes; Engler, John-Oliver; Shumi, Girma; Fischer, Joern;Data collection Preparation for our quantitative survey included extensive theoretical and literature studies on relational values and human-nature relationships. Building upon prior empirical work in the region (see e.g. (Balázsi et al., 2019; Hartel et al., 2016; Riechers et al., 2019) the questionnaire development included two focus groups with laypersons to improve structure and wording of the questionnaire and a pilot study with n = 20. The questionnaire contained parts on (1) utilisation of nature (Visiting frequency of natural areas in the vicinity from “daily” to “never”; distance travelled to these places from “up to 1km” to “over 10km”, use of different natural products such as water, wood, decorative material from “always” to “never”) (2) attitudes towards nature and nature conservation (importance from “very important” to “not important” of the conservation of specific natural attributes in the landscape), (3) relational, intrinsic and instrumental values and (4) socio-demographic information (see Supplementary Material S1 for the full questionnaire). In our study we focused on nine relational values that were seen as important from our prior research, instrumental and intrinsic values. An overview of the values used in this paper and their description can be found in Table 1. Data were collected through face-to-face surveys, within randomly chosen villages within the focal landscapes. We used proportionate sampling based on the population density of the villages in the focal landscapes. Within the villages the streets and households were sampled randomly. Surveys were conducted on various days of the week. After a second unsuccessful try, selected households were marked as dropouts. To decrease the dropout rate we did not randomly select respondents within a given household. All respondents were asked for an oral consent to participate in this study, as a personal signature was deemed to create discomfort and increase drop-out rates, especially in Romania. Data were collected between April and July 2017. This resulted in a total sample size of n = 819 across 52 villages (Romania n = 22, Germany n = 30). The ethics approval of this research was granted by the Leuphana University. Data analysis Exploratory factor analysis Our relational value data frame had a size of N = 819 observations of 18 variables. We imputed missing data with the method of predictive mean matching. Cronbach’s α for these variables was 0.83, while Kaiser-Meyer-Olkin’s measure of sampling adequacy was 0.93, well above the recommended value of 0.6, Bartlett’s test of sphericity was significant (χ² (153) = 5583.0, p < .001). All of these diagnostics suggest reasonable factorability. We considered three, four and five-factor models using oblimin rotation and a minimum residual factoring method. Associated scree plots and fit statistics indicated that the four-factor model was sufficient (RMSEA = 0.071, Tucker-Lewis-Index = 0.885). The four factors explained 29%, 7%, 5% and 4% of the variance respectively for a total of 45%. We refrained from removing items with factor loadings <0.4 because of our sample size of well above 300 (Stevens, 2002 :395). We provide the full loadings matrix in Table 3. We created composite scores for each factor by adding the scores of the items loading onto each factor for subsequent regression analysis. Candidate modeling We modelled the response of the three latent factors to a set of socio-demographic variables using beta regression models (Cribari-Nieto and Zeileis, 2010; Grün et al., 2012) on the latent factor scores that we transformed to the open standard unit interval (0, 1). The transformation applied was the one recommended by Smithson and Verkuilen (Smithson and Verkuilen, 2006), so that y’ = (y × (n – 1) + 0.5) / n where y is the data of length n. We based the set of candidate models on grouping explanatory variables into three categories: personal characteristics of the respondent (‘P’: gender, age), nature-based variables (‘N’: distance travelled, attitude towards conservation, visiting frequency, frequency of use of natural products) and focal landscape (‘L’). We constructed the following set of eight candidate models, which may be seen as our hypotheses regarding what variables might explain the latent factor scores observed: Null, N, P, L, N + P, N + L, L + P, N + P + L. We based model selection on AICc values and used the full average method where model averaging was required (Grueber et al., 2011; Nakagawa and Freckleton, 2011). We conducted our analyses using the R programming language (R Core Team 2019). We present the coefficients of the best-fitting models for each latent factor in Tables 4 and 5 and in the supplementary tables A1-A4. Relational values recently emerged as a concept to comprehensively understand and communicate the many values of nature. Relational values can be defined as preferences and principles about human-nature relationships and focus both on human-nature connections, as well as human-human connections. Here, drawing on 819 face-to-face questionnaires, we analysed relational, intrinsic and instrumental values across a total of six agricultural landscapes in Transylvania (Romania) and Lower Saxony (Germany). The landscapes described a gradient of land use intensity, within and across the countries. Our results suggest a bundling of values into four groups: those concerned with individual cognition (including intrinsic values), those that focus on nature as a place for social interaction and relaxation, those that capture cultural identity and spiritual values and one bundle that only includes instrumental values. These different values, in turn, were strongly related to (i) respondents’ attitudes towards environmental conservation and the (ii) frequency with which respondents used nature as a resource. Instrumental values have the tendency to be inversely related with relational values and were found to increase with the land use intensity of the focal landscapes. Data has been anonymised.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j3tx95xdx&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j3tx95xdx&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Presentation 2022Publisher:Zenodo Ferrer, Manuel; Rodá, Sergi; Chow, Jennifer; Müller, Markus; Klement, Tobias; Molina-Espeja, Patricia;In the context of our project, we organised a webinar at which almost 200 participants assisted. It was aimed at everyone who cares about a greener and more sustainable future. The development of sustainable and resource-saving processes is a major focus of R&D&I work, also supported heavily by the European Commission as part of the Green Deal and the sustainability efforts. In this context, biotechnology is already acting as a facilitator to achieve a circular economy and a bioeconomy. We aim to achieve these goals with the identification, optimisation, production and application of innovative enzymes to support the transformation of various industrial sectors and their consumer products. In this webinar, we wanted to present the competences and topics we acquire or work on in FuturEnzyme to an interested international audience. With this CLIB Forum event, we want to emphasise and promote the need for collaboration between researchers, entrepreneurs, and manufacturers for a greener and more sustainable future. Furthermore, our webinar was also of interest for policy makers, funding bodies, investors and consumers. The FuturEnzyme project partners CSIC, Barcelona Supercomputing Center and the University of Hamburg presented their activities in the project and beyond to a wide range audience.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7057525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 138visibility views 138 download downloads 151 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7057525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu