- home
- Advanced Search
- Energy Research
- 7. Clean energy
- DE
- EU
- Energy Conversion and Management
- Energy Research
- 7. Clean energy
- DE
- EU
- Energy Conversion and Management
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Palomba V; Dawoud B; Sapienza A; Vasta S; Frazzica A;handle: 20.500.14243/354265 , 11570/3106747
In the present work, an experimental study on a lab-scale adsorption refrigerator, based on activated carbon/ethanol working pair is reported. An extensive testing campaign has been carried out at the CNR ITAE laboratory, with multiple aims. First, the performance has been evaluated in terms of both COP and Specific Cooling Power (SCP), under different boundary conditions, including both air conditioning and refrigeration applications. Attractive SCPs, up to 180 W/kg and 70 W/kg for air conditioning and refrigeration, respectively, were measured. Under the same conditions, COP between 0.17 and 0.08 were obtained. In addition, different management strategies, namely, heat recovery between adsorbers and re-allocation of phase durations, were evaluated to identify their influence on the system. Both strategies confirmed the possibility of increasing COP and SCP up to 40% and 25%, respectively. Moreover, a design analysis based on the experimental results has been carried out, to suggest possible improvements of the system. The obtained results demonstrated the possibility of employing a non-toxic refrigerant like ethanol reaching performance comparable with other harmful refrigerants like ammonia and methanol.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Palomba V; Dawoud B; Sapienza A; Vasta S; Frazzica A;handle: 20.500.14243/354265 , 11570/3106747
In the present work, an experimental study on a lab-scale adsorption refrigerator, based on activated carbon/ethanol working pair is reported. An extensive testing campaign has been carried out at the CNR ITAE laboratory, with multiple aims. First, the performance has been evaluated in terms of both COP and Specific Cooling Power (SCP), under different boundary conditions, including both air conditioning and refrigeration applications. Attractive SCPs, up to 180 W/kg and 70 W/kg for air conditioning and refrigeration, respectively, were measured. Under the same conditions, COP between 0.17 and 0.08 were obtained. In addition, different management strategies, namely, heat recovery between adsorbers and re-allocation of phase durations, were evaluated to identify their influence on the system. Both strategies confirmed the possibility of increasing COP and SCP up to 40% and 25%, respectively. Moreover, a design analysis based on the experimental results has been carried out, to suggest possible improvements of the system. The obtained results demonstrated the possibility of employing a non-toxic refrigerant like ethanol reaching performance comparable with other harmful refrigerants like ammonia and methanol.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:EC | COMSYNEC| COMSYNMaier, Simon; Tuomi, Sanna; Kihlman, Johanna; Kurkela, Esa; Dietrich; Ralph Uwe;The conversion of agricultural waste materials such as bark or straw into 2nd generation biofuels constitutes an auspicious way to meet part of the future fuel demand in a sustainable way. The number of possible production routes is diverse, and the techno-economic analyses of these routes have been conducted in very different ways. The route involving gasification, gas purification, and a subsequent Fischer-Tropsch synthesis enables the production of hydrocarbons that achieve current fuel standards after upgrading in the existing refinery infrastructure. To evaluate a promising biomass-to-liquid process, a methodology is presented that incorporates economic constraints into the process design, allowing identification of a regionally optimal process design. The production costs of the new concepts are estimated by setting up a detailed flowsheet simulation in AspenPlus® based on experimental data from the successful demonstration runs of the EU-Project COMSYN. In addition, an existing techno-economic evaluation methodology incorporated into the in-house software tool TEPET (Techno-Economic Process Evaluation Tool) has been extended to evaluate the processes’ performance in different European regions and to include transportation and refining costs. The approach enables the identification of regional sweet spots shown on a map for Central-Europe, indicating production costs and favorable process design for each region. Furthermore, the results of an automated mapping for the optimal process design depending on the heat and electricity market are presented. The performed analyses show that the techno-economic evaluation tends to expand the technology in regions with low feedstock costs, while the optimal process design is defined by the regional heat and electricity market. In this work, net production costs of less than 1.12 €2019/lbiofuel were determined for regions in Hungary, Poland and Slovakia.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:EC | COMSYNEC| COMSYNMaier, Simon; Tuomi, Sanna; Kihlman, Johanna; Kurkela, Esa; Dietrich; Ralph Uwe;The conversion of agricultural waste materials such as bark or straw into 2nd generation biofuels constitutes an auspicious way to meet part of the future fuel demand in a sustainable way. The number of possible production routes is diverse, and the techno-economic analyses of these routes have been conducted in very different ways. The route involving gasification, gas purification, and a subsequent Fischer-Tropsch synthesis enables the production of hydrocarbons that achieve current fuel standards after upgrading in the existing refinery infrastructure. To evaluate a promising biomass-to-liquid process, a methodology is presented that incorporates economic constraints into the process design, allowing identification of a regionally optimal process design. The production costs of the new concepts are estimated by setting up a detailed flowsheet simulation in AspenPlus® based on experimental data from the successful demonstration runs of the EU-Project COMSYN. In addition, an existing techno-economic evaluation methodology incorporated into the in-house software tool TEPET (Techno-Economic Process Evaluation Tool) has been extended to evaluate the processes’ performance in different European regions and to include transportation and refining costs. The approach enables the identification of regional sweet spots shown on a map for Central-Europe, indicating production costs and favorable process design for each region. Furthermore, the results of an automated mapping for the optimal process design depending on the heat and electricity market are presented. The performed analyses show that the techno-economic evaluation tends to expand the technology in regions with low feedstock costs, while the optimal process design is defined by the regional heat and electricity market. In this work, net production costs of less than 1.12 €2019/lbiofuel were determined for regions in Hungary, Poland and Slovakia.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:EC | AutoREEC| AutoREAuthors: Facci, Andrea Luigi; Ubertini, Stefano;handle: 2607/11208 , 2607/37226 , 2067/3076
Abstract Distributed generation and, in particular, cogeneration and trigeneration are generally considered viable solutions to reduce energy consumption and mitigate the environmental impact of developed economies. Nonetheless, such systems need to be carefully designed and managed to effectively meet all the economic and environmental expectations. The design of a distributed generation plant and the choice of its proper management policy are complex tasks that require effective support methodologies and tools. In this paper, we develop a methodology to determine the optimal control strategy for a trigeneration plant. The model enforces mass end energy balances and accounts for the nonlinear and the basic dynamic behavior of each energy converter, for the time varying energy prices and environmental conditions, for maintenance and cold start costs, and for the possibility to store energy. We built on a methodology previously developed and we dramatically broaden its field of application to complex smart grids with a very high temporal detail, by cutting down its computational costs. To this aim, we implement an heuristic procedure that reduces the computational complexity of the non linear optimization problem. The total cash flow, the primary energy consumption, the plant efficiency, and the CO 2 emissions, besides the instantaneous set-point of the plant, are among the most relevant results of the model. The model is first validated through 11 test-cases specifically designed to stress the possible weaknesses of the heuristic procedure. The validation evidences that the proposed procedure does not introduce further approximations to the mathematical model. The global optimum is retrieved for all the considered cases. Afterwards, we apply the proposed methodology to a realistic energy management scenario: the assessment of a fuel cell based trigeneration plant for a civil building for a whole year. The discussion highlights the effectiveness of the proposed method for different applications including the optimization of the control strategy for existing plants, the design of new distributed generation systems, the assessment of innovative energy conversion technologies, and the evaluation of national energy policies.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:EC | AutoREEC| AutoREAuthors: Facci, Andrea Luigi; Ubertini, Stefano;handle: 2607/11208 , 2607/37226 , 2067/3076
Abstract Distributed generation and, in particular, cogeneration and trigeneration are generally considered viable solutions to reduce energy consumption and mitigate the environmental impact of developed economies. Nonetheless, such systems need to be carefully designed and managed to effectively meet all the economic and environmental expectations. The design of a distributed generation plant and the choice of its proper management policy are complex tasks that require effective support methodologies and tools. In this paper, we develop a methodology to determine the optimal control strategy for a trigeneration plant. The model enforces mass end energy balances and accounts for the nonlinear and the basic dynamic behavior of each energy converter, for the time varying energy prices and environmental conditions, for maintenance and cold start costs, and for the possibility to store energy. We built on a methodology previously developed and we dramatically broaden its field of application to complex smart grids with a very high temporal detail, by cutting down its computational costs. To this aim, we implement an heuristic procedure that reduces the computational complexity of the non linear optimization problem. The total cash flow, the primary energy consumption, the plant efficiency, and the CO 2 emissions, besides the instantaneous set-point of the plant, are among the most relevant results of the model. The model is first validated through 11 test-cases specifically designed to stress the possible weaknesses of the heuristic procedure. The validation evidences that the proposed procedure does not introduce further approximations to the mathematical model. The global optimum is retrieved for all the considered cases. Afterwards, we apply the proposed methodology to a realistic energy management scenario: the assessment of a fuel cell based trigeneration plant for a civil building for a whole year. The discussion highlights the effectiveness of the proposed method for different applications including the optimization of the control strategy for existing plants, the design of new distributed generation systems, the assessment of innovative energy conversion technologies, and the evaluation of national energy policies.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jianqiu Li; Ziyou Song; Minggao Ouyang; Guowei Dou; Liangfei Xu; Liangfei Xu; Zunyan Hu; Chuan Fang; Gaihong Kou;Abstract The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu243 citations 243 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jianqiu Li; Ziyou Song; Minggao Ouyang; Guowei Dou; Liangfei Xu; Liangfei Xu; Zunyan Hu; Chuan Fang; Gaihong Kou;Abstract The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu243 citations 243 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: W Seifritz;A new hybrid hydrogen/hydrocarbon-driven motor-car is proposed which is equipped with a CO2-trap and which exhibits an energy absorption ability in its storage systems (with respect to their masses) much larger than that of a hydrogen- or battery-powered car. The principal idea is to use light metal hydrides (like MgH2) as energy storage facilities whose metallic atoms not only carry fuel atoms but, if is discharged, also the carbon dioxide from the burned hydrocarbons. In the opinion of the author, a system is presented for the first time which would be able to bind and collect the CO2 of a large number of diffuse CO2-sources for the purpose of its central disposal.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: W Seifritz;A new hybrid hydrogen/hydrocarbon-driven motor-car is proposed which is equipped with a CO2-trap and which exhibits an energy absorption ability in its storage systems (with respect to their masses) much larger than that of a hydrogen- or battery-powered car. The principal idea is to use light metal hydrides (like MgH2) as energy storage facilities whose metallic atoms not only carry fuel atoms but, if is discharged, also the carbon dioxide from the burned hydrocarbons. In the opinion of the author, a system is presented for the first time which would be able to bind and collect the CO2 of a large number of diffuse CO2-sources for the purpose of its central disposal.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUElena Rodríguez; Roberto Palos; Alazne Gutiérrez; David Trueba; José M. Arandes; Javier Bilbao;The co-feeding of high-density polyethylene pyrolysis waxes (HDPE waxes) with vacuum gasoil (VGO) on the catalytic cracking has been investigated. Runs have been conducted by feeding a blend of HDPE waxes/VGO (1/4 in mass) to a laboratory-scale reactor that mimics the behavior of the riser reactor of the industrial FCC unit. Tested operating conditions have been the following: 500–560 °C; catalyst to oil mass ratio (C/O), 3–7 gcat gfeed−1; and, contact time, 6 s. The comparison of obtained results, i.e., yield and composition of the fractions, in the cracking of the blend with those obtained in the cracking of the VGO and HDPE waxes separately, has exposed the existence of synergetic mechanisms. This way, the cracking of the blend produces a more olefinic gaseous fraction and a naphtha with higher content of iso-paraffins and olefins and lower of aromatics, together with a comparable yield of coke. This work has been carried out with financial support of the Ministry of Science, Innovation and Universities (MICINN) of the Spanish Government (grant RTI2018-096981-B-I00), the European Union’s ERDF funds and the European Commission (HORIZON H2020- MSCA RISE-2018. Contract No. 823745) and the Basque Government (grant IT1218-19). Dr. Roberto Palos thanks the University of the Basque Country UPV/ EHU for his postdoctoral grant (UPV/EHU 2019). David Trueba is also grateful for his PhD grant awarded by the University of the Basque Country UPV/EHU (PIF 2018). The authors also acknowledge Petronor Refinery for providing the VGO and the catalyst used in this work.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUElena Rodríguez; Roberto Palos; Alazne Gutiérrez; David Trueba; José M. Arandes; Javier Bilbao;The co-feeding of high-density polyethylene pyrolysis waxes (HDPE waxes) with vacuum gasoil (VGO) on the catalytic cracking has been investigated. Runs have been conducted by feeding a blend of HDPE waxes/VGO (1/4 in mass) to a laboratory-scale reactor that mimics the behavior of the riser reactor of the industrial FCC unit. Tested operating conditions have been the following: 500–560 °C; catalyst to oil mass ratio (C/O), 3–7 gcat gfeed−1; and, contact time, 6 s. The comparison of obtained results, i.e., yield and composition of the fractions, in the cracking of the blend with those obtained in the cracking of the VGO and HDPE waxes separately, has exposed the existence of synergetic mechanisms. This way, the cracking of the blend produces a more olefinic gaseous fraction and a naphtha with higher content of iso-paraffins and olefins and lower of aromatics, together with a comparable yield of coke. This work has been carried out with financial support of the Ministry of Science, Innovation and Universities (MICINN) of the Spanish Government (grant RTI2018-096981-B-I00), the European Union’s ERDF funds and the European Commission (HORIZON H2020- MSCA RISE-2018. Contract No. 823745) and the Basque Government (grant IT1218-19). Dr. Roberto Palos thanks the University of the Basque Country UPV/ EHU for his postdoctoral grant (UPV/EHU 2019). David Trueba is also grateful for his PhD grant awarded by the University of the Basque Country UPV/EHU (PIF 2018). The authors also acknowledge Petronor Refinery for providing the VGO and the catalyst used in this work.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SoFiAEC| SoFiAAuthors: Falciani, Gabriele; Chiavazzo, Eliodoro;handle: 11583/2980374
Photo-electrochemical and photocatalytic technologies are promising solutions for solar fuel production and involve a number of physical and chemical phenomena. We provide an overview of numerical and analytical tools to describe such phenomena occurring at disparate time and space scales within devices such as photoelectrochemical cells and photo-chemical reactors. On one hand, chemical phenomena include photo-induced electron transfer, charge separation, recombination, equilibrium reactions between species in solutions and adsorption reactions. On the other hand, examples of physical phenomena are the transport of chemical species or self-assembling of molecular structures. In this respect, we critically review macroscale continuum models for transport phenomena combined with kinetic descriptions including their possible coupling with models at even lower scales. We specifically focus on atomistic and coarse-grained models able to represent the local environment of the reactive interfaces such as photoelectrodes or supra-molecular assemblies. The critical role of the latter structures on photochemical conversion is highlighted: Therefore, morphological structure of self-assemblies, such as micelles and monolayers, in solution and at the solid–liquid or gas–liquid interfaces are also discussed. Finally, important scientific gaps are identified and possible perspectives for future research outlooked.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SoFiAEC| SoFiAAuthors: Falciani, Gabriele; Chiavazzo, Eliodoro;handle: 11583/2980374
Photo-electrochemical and photocatalytic technologies are promising solutions for solar fuel production and involve a number of physical and chemical phenomena. We provide an overview of numerical and analytical tools to describe such phenomena occurring at disparate time and space scales within devices such as photoelectrochemical cells and photo-chemical reactors. On one hand, chemical phenomena include photo-induced electron transfer, charge separation, recombination, equilibrium reactions between species in solutions and adsorption reactions. On the other hand, examples of physical phenomena are the transport of chemical species or self-assembling of molecular structures. In this respect, we critically review macroscale continuum models for transport phenomena combined with kinetic descriptions including their possible coupling with models at even lower scales. We specifically focus on atomistic and coarse-grained models able to represent the local environment of the reactive interfaces such as photoelectrodes or supra-molecular assemblies. The critical role of the latter structures on photochemical conversion is highlighted: Therefore, morphological structure of self-assemblies, such as micelles and monolayers, in solution and at the solid–liquid or gas–liquid interfaces are also discussed. Finally, important scientific gaps are identified and possible perspectives for future research outlooked.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Praseeth Prabhakaran; Frank Graf; Wolfgang Koeppel; Thomas Kolb;Participants of the COP 26 summit have agreed to limit global temperature rise to 1.5 K by 2050. Out of the many strategies envisaged to meet the targets of COP 26, the ‘Sector Coupling’ process aims to use renewable electricity in residential heating, chemical industry, and transportation sectors. Several studies predict that de-central energy systems will play a significant role in the future. Among the proposed sector coupling strategies in de-central energy systems, the Power to Gas (PtG) process producing chemical energy carriers like Substitute Natural Gas (SNG) from renewable power is gaining acceptance. Numerical models of de-central energy systems are needed to analyse sector coupling under fluctuating renewable energy generation and changing gas demand. This study introduces a numerical model of a decentral energy system that includes a novel methanation concept developed at the Engler Bunte Institut of KIT called 3 Phase Methanation. Here, H2 from electrolysis and CO2 from DAC or other biomass-based sources are passed through a slurry bubble column reactor. The slurry is a suspension of the catalyst in a liquid heat transfer medium where the heat of the reaction is dissipated. The 3-Phase methanation process is modelled in this study using the axial dispersion method. Earlier studies describing experimental campaigns conducted on the pilot plant in KIT have proven that the reactor core is nearly isothermal with stable product gas compositions even if the load changes are instantaneous. In this study, it is shown that the numerical model can replicate the experimental results. Following modelling and validation, the numerical model of the PtG plant is integrated with the other components to simulate the de-central energy system. The simulation results demonstrate the dynamic output of all the components and, in particular, the response provided by the PtG plant. This model can be adapted to simulate sector coupling in future de-central energy systems and analyse aspects like long-term energy storage, GHG minimisation and cost-optimal operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Praseeth Prabhakaran; Frank Graf; Wolfgang Koeppel; Thomas Kolb;Participants of the COP 26 summit have agreed to limit global temperature rise to 1.5 K by 2050. Out of the many strategies envisaged to meet the targets of COP 26, the ‘Sector Coupling’ process aims to use renewable electricity in residential heating, chemical industry, and transportation sectors. Several studies predict that de-central energy systems will play a significant role in the future. Among the proposed sector coupling strategies in de-central energy systems, the Power to Gas (PtG) process producing chemical energy carriers like Substitute Natural Gas (SNG) from renewable power is gaining acceptance. Numerical models of de-central energy systems are needed to analyse sector coupling under fluctuating renewable energy generation and changing gas demand. This study introduces a numerical model of a decentral energy system that includes a novel methanation concept developed at the Engler Bunte Institut of KIT called 3 Phase Methanation. Here, H2 from electrolysis and CO2 from DAC or other biomass-based sources are passed through a slurry bubble column reactor. The slurry is a suspension of the catalyst in a liquid heat transfer medium where the heat of the reaction is dissipated. The 3-Phase methanation process is modelled in this study using the axial dispersion method. Earlier studies describing experimental campaigns conducted on the pilot plant in KIT have proven that the reactor core is nearly isothermal with stable product gas compositions even if the load changes are instantaneous. In this study, it is shown that the numerical model can replicate the experimental results. Following modelling and validation, the numerical model of the PtG plant is integrated with the other components to simulate the de-central energy system. The simulation results demonstrate the dynamic output of all the components and, in particular, the response provided by the PtG plant. This model can be adapted to simulate sector coupling in future de-central energy systems and analyse aspects like long-term energy storage, GHG minimisation and cost-optimal operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Masao Komatsu; Osamu Tsukamoto; Keisuke Sonoda; Masahiko Ozaki; Yuichi Fujioka;Abstract How to send CO2 into deep ocean is one of the key technologies for the ocean storage of CO2. In this paper, techcical aspects on sending liquid CO2 into deep ocean with a long vertical pipe hung from a floating platform are investigated. Among lots of technical subjects to be solved, the prediction method of CO2 condition in temperature and pressure along the pipe is studied, and also the dynamic behavior of the pipe under the storm condition is discussed. The feasibility is fundamentally confirmed in the case study.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Masao Komatsu; Osamu Tsukamoto; Keisuke Sonoda; Masahiko Ozaki; Yuichi Fujioka;Abstract How to send CO2 into deep ocean is one of the key technologies for the ocean storage of CO2. In this paper, techcical aspects on sending liquid CO2 into deep ocean with a long vertical pipe hung from a floating platform are investigated. Among lots of technical subjects to be solved, the prediction method of CO2 condition in temperature and pressure along the pipe is studied, and also the dynamic behavior of the pipe under the storm condition is discussed. The feasibility is fundamentally confirmed in the case study.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Palomba V; Dawoud B; Sapienza A; Vasta S; Frazzica A;handle: 20.500.14243/354265 , 11570/3106747
In the present work, an experimental study on a lab-scale adsorption refrigerator, based on activated carbon/ethanol working pair is reported. An extensive testing campaign has been carried out at the CNR ITAE laboratory, with multiple aims. First, the performance has been evaluated in terms of both COP and Specific Cooling Power (SCP), under different boundary conditions, including both air conditioning and refrigeration applications. Attractive SCPs, up to 180 W/kg and 70 W/kg for air conditioning and refrigeration, respectively, were measured. Under the same conditions, COP between 0.17 and 0.08 were obtained. In addition, different management strategies, namely, heat recovery between adsorbers and re-allocation of phase durations, were evaluated to identify their influence on the system. Both strategies confirmed the possibility of increasing COP and SCP up to 40% and 25%, respectively. Moreover, a design analysis based on the experimental results has been carried out, to suggest possible improvements of the system. The obtained results demonstrated the possibility of employing a non-toxic refrigerant like ethanol reaching performance comparable with other harmful refrigerants like ammonia and methanol.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Palomba V; Dawoud B; Sapienza A; Vasta S; Frazzica A;handle: 20.500.14243/354265 , 11570/3106747
In the present work, an experimental study on a lab-scale adsorption refrigerator, based on activated carbon/ethanol working pair is reported. An extensive testing campaign has been carried out at the CNR ITAE laboratory, with multiple aims. First, the performance has been evaluated in terms of both COP and Specific Cooling Power (SCP), under different boundary conditions, including both air conditioning and refrigeration applications. Attractive SCPs, up to 180 W/kg and 70 W/kg for air conditioning and refrigeration, respectively, were measured. Under the same conditions, COP between 0.17 and 0.08 were obtained. In addition, different management strategies, namely, heat recovery between adsorbers and re-allocation of phase durations, were evaluated to identify their influence on the system. Both strategies confirmed the possibility of increasing COP and SCP up to 40% and 25%, respectively. Moreover, a design analysis based on the experimental results has been carried out, to suggest possible improvements of the system. The obtained results demonstrated the possibility of employing a non-toxic refrigerant like ethanol reaching performance comparable with other harmful refrigerants like ammonia and methanol.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:EC | COMSYNEC| COMSYNMaier, Simon; Tuomi, Sanna; Kihlman, Johanna; Kurkela, Esa; Dietrich; Ralph Uwe;The conversion of agricultural waste materials such as bark or straw into 2nd generation biofuels constitutes an auspicious way to meet part of the future fuel demand in a sustainable way. The number of possible production routes is diverse, and the techno-economic analyses of these routes have been conducted in very different ways. The route involving gasification, gas purification, and a subsequent Fischer-Tropsch synthesis enables the production of hydrocarbons that achieve current fuel standards after upgrading in the existing refinery infrastructure. To evaluate a promising biomass-to-liquid process, a methodology is presented that incorporates economic constraints into the process design, allowing identification of a regionally optimal process design. The production costs of the new concepts are estimated by setting up a detailed flowsheet simulation in AspenPlus® based on experimental data from the successful demonstration runs of the EU-Project COMSYN. In addition, an existing techno-economic evaluation methodology incorporated into the in-house software tool TEPET (Techno-Economic Process Evaluation Tool) has been extended to evaluate the processes’ performance in different European regions and to include transportation and refining costs. The approach enables the identification of regional sweet spots shown on a map for Central-Europe, indicating production costs and favorable process design for each region. Furthermore, the results of an automated mapping for the optimal process design depending on the heat and electricity market are presented. The performed analyses show that the techno-economic evaluation tends to expand the technology in regions with low feedstock costs, while the optimal process design is defined by the regional heat and electricity market. In this work, net production costs of less than 1.12 €2019/lbiofuel were determined for regions in Hungary, Poland and Slovakia.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:EC | COMSYNEC| COMSYNMaier, Simon; Tuomi, Sanna; Kihlman, Johanna; Kurkela, Esa; Dietrich; Ralph Uwe;The conversion of agricultural waste materials such as bark or straw into 2nd generation biofuels constitutes an auspicious way to meet part of the future fuel demand in a sustainable way. The number of possible production routes is diverse, and the techno-economic analyses of these routes have been conducted in very different ways. The route involving gasification, gas purification, and a subsequent Fischer-Tropsch synthesis enables the production of hydrocarbons that achieve current fuel standards after upgrading in the existing refinery infrastructure. To evaluate a promising biomass-to-liquid process, a methodology is presented that incorporates economic constraints into the process design, allowing identification of a regionally optimal process design. The production costs of the new concepts are estimated by setting up a detailed flowsheet simulation in AspenPlus® based on experimental data from the successful demonstration runs of the EU-Project COMSYN. In addition, an existing techno-economic evaluation methodology incorporated into the in-house software tool TEPET (Techno-Economic Process Evaluation Tool) has been extended to evaluate the processes’ performance in different European regions and to include transportation and refining costs. The approach enables the identification of regional sweet spots shown on a map for Central-Europe, indicating production costs and favorable process design for each region. Furthermore, the results of an automated mapping for the optimal process design depending on the heat and electricity market are presented. The performed analyses show that the techno-economic evaluation tends to expand the technology in regions with low feedstock costs, while the optimal process design is defined by the regional heat and electricity market. In this work, net production costs of less than 1.12 €2019/lbiofuel were determined for regions in Hungary, Poland and Slovakia.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2021License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:EC | AutoREEC| AutoREAuthors: Facci, Andrea Luigi; Ubertini, Stefano;handle: 2607/11208 , 2607/37226 , 2067/3076
Abstract Distributed generation and, in particular, cogeneration and trigeneration are generally considered viable solutions to reduce energy consumption and mitigate the environmental impact of developed economies. Nonetheless, such systems need to be carefully designed and managed to effectively meet all the economic and environmental expectations. The design of a distributed generation plant and the choice of its proper management policy are complex tasks that require effective support methodologies and tools. In this paper, we develop a methodology to determine the optimal control strategy for a trigeneration plant. The model enforces mass end energy balances and accounts for the nonlinear and the basic dynamic behavior of each energy converter, for the time varying energy prices and environmental conditions, for maintenance and cold start costs, and for the possibility to store energy. We built on a methodology previously developed and we dramatically broaden its field of application to complex smart grids with a very high temporal detail, by cutting down its computational costs. To this aim, we implement an heuristic procedure that reduces the computational complexity of the non linear optimization problem. The total cash flow, the primary energy consumption, the plant efficiency, and the CO 2 emissions, besides the instantaneous set-point of the plant, are among the most relevant results of the model. The model is first validated through 11 test-cases specifically designed to stress the possible weaknesses of the heuristic procedure. The validation evidences that the proposed procedure does not introduce further approximations to the mathematical model. The global optimum is retrieved for all the considered cases. Afterwards, we apply the proposed methodology to a realistic energy management scenario: the assessment of a fuel cell based trigeneration plant for a civil building for a whole year. The discussion highlights the effectiveness of the proposed method for different applications including the optimization of the control strategy for existing plants, the design of new distributed generation systems, the assessment of innovative energy conversion technologies, and the evaluation of national energy policies.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Funded by:EC | AutoREEC| AutoREAuthors: Facci, Andrea Luigi; Ubertini, Stefano;handle: 2607/11208 , 2607/37226 , 2067/3076
Abstract Distributed generation and, in particular, cogeneration and trigeneration are generally considered viable solutions to reduce energy consumption and mitigate the environmental impact of developed economies. Nonetheless, such systems need to be carefully designed and managed to effectively meet all the economic and environmental expectations. The design of a distributed generation plant and the choice of its proper management policy are complex tasks that require effective support methodologies and tools. In this paper, we develop a methodology to determine the optimal control strategy for a trigeneration plant. The model enforces mass end energy balances and accounts for the nonlinear and the basic dynamic behavior of each energy converter, for the time varying energy prices and environmental conditions, for maintenance and cold start costs, and for the possibility to store energy. We built on a methodology previously developed and we dramatically broaden its field of application to complex smart grids with a very high temporal detail, by cutting down its computational costs. To this aim, we implement an heuristic procedure that reduces the computational complexity of the non linear optimization problem. The total cash flow, the primary energy consumption, the plant efficiency, and the CO 2 emissions, besides the instantaneous set-point of the plant, are among the most relevant results of the model. The model is first validated through 11 test-cases specifically designed to stress the possible weaknesses of the heuristic procedure. The validation evidences that the proposed procedure does not introduce further approximations to the mathematical model. The global optimum is retrieved for all the considered cases. Afterwards, we apply the proposed methodology to a realistic energy management scenario: the assessment of a fuel cell based trigeneration plant for a civil building for a whole year. The discussion highlights the effectiveness of the proposed method for different applications including the optimization of the control strategy for existing plants, the design of new distributed generation systems, the assessment of innovative energy conversion technologies, and the evaluation of national energy policies.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2018Full-Text: http://hdl.handle.net/2067/3076Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jianqiu Li; Ziyou Song; Minggao Ouyang; Guowei Dou; Liangfei Xu; Liangfei Xu; Zunyan Hu; Chuan Fang; Gaihong Kou;Abstract The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu243 citations 243 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jianqiu Li; Ziyou Song; Minggao Ouyang; Guowei Dou; Liangfei Xu; Liangfei Xu; Zunyan Hu; Chuan Fang; Gaihong Kou;Abstract The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu243 citations 243 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: W Seifritz;A new hybrid hydrogen/hydrocarbon-driven motor-car is proposed which is equipped with a CO2-trap and which exhibits an energy absorption ability in its storage systems (with respect to their masses) much larger than that of a hydrogen- or battery-powered car. The principal idea is to use light metal hydrides (like MgH2) as energy storage facilities whose metallic atoms not only carry fuel atoms but, if is discharged, also the carbon dioxide from the burned hydrocarbons. In the opinion of the author, a system is presented for the first time which would be able to bind and collect the CO2 of a large number of diffuse CO2-sources for the purpose of its central disposal.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: W Seifritz;A new hybrid hydrogen/hydrocarbon-driven motor-car is proposed which is equipped with a CO2-trap and which exhibits an energy absorption ability in its storage systems (with respect to their masses) much larger than that of a hydrogen- or battery-powered car. The principal idea is to use light metal hydrides (like MgH2) as energy storage facilities whose metallic atoms not only carry fuel atoms but, if is discharged, also the carbon dioxide from the burned hydrocarbons. In the opinion of the author, a system is presented for the first time which would be able to bind and collect the CO2 of a large number of diffuse CO2-sources for the purpose of its central disposal.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-3199(93)90026-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUElena Rodríguez; Roberto Palos; Alazne Gutiérrez; David Trueba; José M. Arandes; Javier Bilbao;The co-feeding of high-density polyethylene pyrolysis waxes (HDPE waxes) with vacuum gasoil (VGO) on the catalytic cracking has been investigated. Runs have been conducted by feeding a blend of HDPE waxes/VGO (1/4 in mass) to a laboratory-scale reactor that mimics the behavior of the riser reactor of the industrial FCC unit. Tested operating conditions have been the following: 500–560 °C; catalyst to oil mass ratio (C/O), 3–7 gcat gfeed−1; and, contact time, 6 s. The comparison of obtained results, i.e., yield and composition of the fractions, in the cracking of the blend with those obtained in the cracking of the VGO and HDPE waxes separately, has exposed the existence of synergetic mechanisms. This way, the cracking of the blend produces a more olefinic gaseous fraction and a naphtha with higher content of iso-paraffins and olefins and lower of aromatics, together with a comparable yield of coke. This work has been carried out with financial support of the Ministry of Science, Innovation and Universities (MICINN) of the Spanish Government (grant RTI2018-096981-B-I00), the European Union’s ERDF funds and the European Commission (HORIZON H2020- MSCA RISE-2018. Contract No. 823745) and the Basque Government (grant IT1218-19). Dr. Roberto Palos thanks the University of the Basque Country UPV/ EHU for his postdoctoral grant (UPV/EHU 2019). David Trueba is also grateful for his PhD grant awarded by the University of the Basque Country UPV/EHU (PIF 2018). The authors also acknowledge Petronor Refinery for providing the VGO and the catalyst used in this work.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUElena Rodríguez; Roberto Palos; Alazne Gutiérrez; David Trueba; José M. Arandes; Javier Bilbao;The co-feeding of high-density polyethylene pyrolysis waxes (HDPE waxes) with vacuum gasoil (VGO) on the catalytic cracking has been investigated. Runs have been conducted by feeding a blend of HDPE waxes/VGO (1/4 in mass) to a laboratory-scale reactor that mimics the behavior of the riser reactor of the industrial FCC unit. Tested operating conditions have been the following: 500–560 °C; catalyst to oil mass ratio (C/O), 3–7 gcat gfeed−1; and, contact time, 6 s. The comparison of obtained results, i.e., yield and composition of the fractions, in the cracking of the blend with those obtained in the cracking of the VGO and HDPE waxes separately, has exposed the existence of synergetic mechanisms. This way, the cracking of the blend produces a more olefinic gaseous fraction and a naphtha with higher content of iso-paraffins and olefins and lower of aromatics, together with a comparable yield of coke. This work has been carried out with financial support of the Ministry of Science, Innovation and Universities (MICINN) of the Spanish Government (grant RTI2018-096981-B-I00), the European Union’s ERDF funds and the European Commission (HORIZON H2020- MSCA RISE-2018. Contract No. 823745) and the Basque Government (grant IT1218-19). Dr. Roberto Palos thanks the University of the Basque Country UPV/ EHU for his postdoctoral grant (UPV/EHU 2019). David Trueba is also grateful for his PhD grant awarded by the University of the Basque Country UPV/EHU (PIF 2018). The authors also acknowledge Petronor Refinery for providing the VGO and the catalyst used in this work.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SoFiAEC| SoFiAAuthors: Falciani, Gabriele; Chiavazzo, Eliodoro;handle: 11583/2980374
Photo-electrochemical and photocatalytic technologies are promising solutions for solar fuel production and involve a number of physical and chemical phenomena. We provide an overview of numerical and analytical tools to describe such phenomena occurring at disparate time and space scales within devices such as photoelectrochemical cells and photo-chemical reactors. On one hand, chemical phenomena include photo-induced electron transfer, charge separation, recombination, equilibrium reactions between species in solutions and adsorption reactions. On the other hand, examples of physical phenomena are the transport of chemical species or self-assembling of molecular structures. In this respect, we critically review macroscale continuum models for transport phenomena combined with kinetic descriptions including their possible coupling with models at even lower scales. We specifically focus on atomistic and coarse-grained models able to represent the local environment of the reactive interfaces such as photoelectrodes or supra-molecular assemblies. The critical role of the latter structures on photochemical conversion is highlighted: Therefore, morphological structure of self-assemblies, such as micelles and monolayers, in solution and at the solid–liquid or gas–liquid interfaces are also discussed. Finally, important scientific gaps are identified and possible perspectives for future research outlooked.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SoFiAEC| SoFiAAuthors: Falciani, Gabriele; Chiavazzo, Eliodoro;handle: 11583/2980374
Photo-electrochemical and photocatalytic technologies are promising solutions for solar fuel production and involve a number of physical and chemical phenomena. We provide an overview of numerical and analytical tools to describe such phenomena occurring at disparate time and space scales within devices such as photoelectrochemical cells and photo-chemical reactors. On one hand, chemical phenomena include photo-induced electron transfer, charge separation, recombination, equilibrium reactions between species in solutions and adsorption reactions. On the other hand, examples of physical phenomena are the transport of chemical species or self-assembling of molecular structures. In this respect, we critically review macroscale continuum models for transport phenomena combined with kinetic descriptions including their possible coupling with models at even lower scales. We specifically focus on atomistic and coarse-grained models able to represent the local environment of the reactive interfaces such as photoelectrodes or supra-molecular assemblies. The critical role of the latter structures on photochemical conversion is highlighted: Therefore, morphological structure of self-assemblies, such as micelles and monolayers, in solution and at the solid–liquid or gas–liquid interfaces are also discussed. Finally, important scientific gaps are identified and possible perspectives for future research outlooked.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Praseeth Prabhakaran; Frank Graf; Wolfgang Koeppel; Thomas Kolb;Participants of the COP 26 summit have agreed to limit global temperature rise to 1.5 K by 2050. Out of the many strategies envisaged to meet the targets of COP 26, the ‘Sector Coupling’ process aims to use renewable electricity in residential heating, chemical industry, and transportation sectors. Several studies predict that de-central energy systems will play a significant role in the future. Among the proposed sector coupling strategies in de-central energy systems, the Power to Gas (PtG) process producing chemical energy carriers like Substitute Natural Gas (SNG) from renewable power is gaining acceptance. Numerical models of de-central energy systems are needed to analyse sector coupling under fluctuating renewable energy generation and changing gas demand. This study introduces a numerical model of a decentral energy system that includes a novel methanation concept developed at the Engler Bunte Institut of KIT called 3 Phase Methanation. Here, H2 from electrolysis and CO2 from DAC or other biomass-based sources are passed through a slurry bubble column reactor. The slurry is a suspension of the catalyst in a liquid heat transfer medium where the heat of the reaction is dissipated. The 3-Phase methanation process is modelled in this study using the axial dispersion method. Earlier studies describing experimental campaigns conducted on the pilot plant in KIT have proven that the reactor core is nearly isothermal with stable product gas compositions even if the load changes are instantaneous. In this study, it is shown that the numerical model can replicate the experimental results. Following modelling and validation, the numerical model of the PtG plant is integrated with the other components to simulate the de-central energy system. The simulation results demonstrate the dynamic output of all the components and, in particular, the response provided by the PtG plant. This model can be adapted to simulate sector coupling in future de-central energy systems and analyse aspects like long-term energy storage, GHG minimisation and cost-optimal operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Praseeth Prabhakaran; Frank Graf; Wolfgang Koeppel; Thomas Kolb;Participants of the COP 26 summit have agreed to limit global temperature rise to 1.5 K by 2050. Out of the many strategies envisaged to meet the targets of COP 26, the ‘Sector Coupling’ process aims to use renewable electricity in residential heating, chemical industry, and transportation sectors. Several studies predict that de-central energy systems will play a significant role in the future. Among the proposed sector coupling strategies in de-central energy systems, the Power to Gas (PtG) process producing chemical energy carriers like Substitute Natural Gas (SNG) from renewable power is gaining acceptance. Numerical models of de-central energy systems are needed to analyse sector coupling under fluctuating renewable energy generation and changing gas demand. This study introduces a numerical model of a decentral energy system that includes a novel methanation concept developed at the Engler Bunte Institut of KIT called 3 Phase Methanation. Here, H2 from electrolysis and CO2 from DAC or other biomass-based sources are passed through a slurry bubble column reactor. The slurry is a suspension of the catalyst in a liquid heat transfer medium where the heat of the reaction is dissipated. The 3-Phase methanation process is modelled in this study using the axial dispersion method. Earlier studies describing experimental campaigns conducted on the pilot plant in KIT have proven that the reactor core is nearly isothermal with stable product gas compositions even if the load changes are instantaneous. In this study, it is shown that the numerical model can replicate the experimental results. Following modelling and validation, the numerical model of the PtG plant is integrated with the other components to simulate the de-central energy system. The simulation results demonstrate the dynamic output of all the components and, in particular, the response provided by the PtG plant. This model can be adapted to simulate sector coupling in future de-central energy systems and analyse aspects like long-term energy storage, GHG minimisation and cost-optimal operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Masao Komatsu; Osamu Tsukamoto; Keisuke Sonoda; Masahiko Ozaki; Yuichi Fujioka;Abstract How to send CO2 into deep ocean is one of the key technologies for the ocean storage of CO2. In this paper, techcical aspects on sending liquid CO2 into deep ocean with a long vertical pipe hung from a floating platform are investigated. Among lots of technical subjects to be solved, the prediction method of CO2 condition in temperature and pressure along the pipe is studied, and also the dynamic behavior of the pipe under the storm condition is discussed. The feasibility is fundamentally confirmed in the case study.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Masao Komatsu; Osamu Tsukamoto; Keisuke Sonoda; Masahiko Ozaki; Yuichi Fujioka;Abstract How to send CO2 into deep ocean is one of the key technologies for the ocean storage of CO2. In this paper, techcical aspects on sending liquid CO2 into deep ocean with a long vertical pipe hung from a floating platform are investigated. Among lots of technical subjects to be solved, the prediction method of CO2 condition in temperature and pressure along the pipe is studied, and also the dynamic behavior of the pipe under the storm condition is discussed. The feasibility is fundamentally confirmed in the case study.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1995 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00047-h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu