- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- medical and health sciences
- EU
- DK
- Energy Research
- Open Access
- Restricted
- medical and health sciences
- EU
- DK
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesAuthors:Silvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
+41 AuthorsLevan Tielidze
Levan Tielidze in OpenAIRESilvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
Levan Tielidze
Levan Tielidze in OpenAIREPritam Chand;
Pritam Chand
Pritam Chand in OpenAIREKatrin Sieron;
Katrin Sieron
Katrin Sieron in OpenAIREPeter Almond;
Roberto Ambrosini;Peter Almond
Peter Almond in OpenAIREFabien Anthelme;
Pablo Alviz Gazitúa;Fabien Anthelme
Fabien Anthelme in OpenAIRERakesh Bhambri;
Rakesh Bhambri
Rakesh Bhambri in OpenAIREAurélie Bonin;
Marco Caccianiga;Aurélie Bonin
Aurélie Bonin in OpenAIRESophie Cauvy-Fraunié;
Jorge Luis Ceballos Lievano;Sophie Cauvy-Fraunié
Sophie Cauvy-Fraunié in OpenAIREJohn Clague;
Justiniano Alejo Cochachín Rapre;John Clague
John Clague in OpenAIREOlivier Dangles;
Olivier Dangles
Olivier Dangles in OpenAIREPhilip Deline;
Andre Eger;Philip Deline
Philip Deline in OpenAIRERolando Cruz Encarnación;
Sergey Erokhin;Rolando Cruz Encarnación
Rolando Cruz Encarnación in OpenAIREAndrea Franzetti;
Andrea Franzetti
Andrea Franzetti in OpenAIRELudovic Gielly;
Ludovic Gielly
Ludovic Gielly in OpenAIREFabrizio Gili;
Fabrizio Gili
Fabrizio Gili in OpenAIREMauro Gobbi;
Mauro Gobbi
Mauro Gobbi in OpenAIREAlessia Guerrieri;
Sigmund Hågvar;Alessia Guerrieri
Alessia Guerrieri in OpenAIRENorine Khedim;
Norine Khedim
Norine Khedim in OpenAIRERahab Kinyanjui;
Rahab Kinyanjui
Rahab Kinyanjui in OpenAIREErwan Messager;
Marco Aurelio Morales-Martínez;Erwan Messager
Erwan Messager in OpenAIREGwendolyn Peyre;
Francesca Pittino;Gwendolyn Peyre
Gwendolyn Peyre in OpenAIREJerome Poulenard;
Jerome Poulenard
Jerome Poulenard in OpenAIRERoberto Seppi;
Milap Chand Sharma; Nurai Urseitova; Blake Weissling;Roberto Seppi
Roberto Seppi in OpenAIREYan Yang;
Vitalii Zaginaev;Yan Yang
Yan Yang in OpenAIREAnaïs Zimmer;
Anaïs Zimmer
Anaïs Zimmer in OpenAIREGuglielmina Adele Diolaiuti;
Guglielmina Adele Diolaiuti
Guglielmina Adele Diolaiuti in OpenAIREAntoine Rabatel;
Antoine Rabatel
Antoine Rabatel in OpenAIREGentile Francesco Ficetola;
Gentile Francesco Ficetola
Gentile Francesco Ficetola in OpenAIREdoi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Netherlands, France, France, France, DenmarkPublisher:Frontiers Media SA Funded by:EC | SPECIALS, EC | INCAEC| SPECIALS ,EC| INCAAuthors: Annelein Meisner; Annelein Meisner; Annelein Meisner;Samuel Jacquiod;
+6 AuthorsSamuel Jacquiod
Samuel Jacquiod in OpenAIREAnnelein Meisner; Annelein Meisner; Annelein Meisner;Samuel Jacquiod;
Samuel Jacquiod
Samuel Jacquiod in OpenAIREBasten L. Snoek;
Basten L. Snoek; Basten L. Snoek; Freddy C. ten Hooven;Basten L. Snoek
Basten L. Snoek in OpenAIREWim H. van der Putten;
Wim H. van der Putten;Wim H. van der Putten
Wim H. van der Putten in OpenAIREpmid: 29563897
pmc: PMC5845876
It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little is known on how drought and rainfall fluctuations, which affect the composition and structure of microbial communities, persist once original moisture conditions have been restored. Here, we study how simulated short-term drying and re-wetting events shape the community composition of soil fungi and prokaryotes. In a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted to optimal moisture (50% WHC, water holding capacity) or to saturation level (100% WHC). Composition, community structure and diversity of microbes were measured by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture content had been restored. Drying and extreme re-wetting decreased richness of microbial communities, but not evenness. Abundance changes were observed in only 8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not differ between drying and re-wetting treatments. Two specific legacy response groups (LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG decreased in relative abundance in soil with a history of drought, whereas OTUs that increased in soil with a history of drought formed a second LRG. These microbial responses were spread among different phyla. Drought appeared to be more important for the microbial community composition than the following extreme re-wetting. 16S profiles were correlated with both inorganic N concentration and basal respiration and ITS profiles correlated with fungal biomass. We conclude that a drying and/or an extreme re-wetting history can persist in soil microbial communities via specific response groups composed of members with broad phylogenetic origins, with possible functional consequences on soil processes and plant species. As a large fraction of OTUs responding to drying and re-wetting belonged to the rare biosphere, our results suggest that low abundant microbial species are potentially important for ecosystem responses to extreme weather events.
Frontiers in Microbi... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02626888/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02626888/documentCopenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)http://dx.doi.org/10.3389/fmic...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2018.00294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02626888/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02626888/documentCopenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)http://dx.doi.org/10.3389/fmic...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2018.00294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Frontiers Media SA Funded by:EC | SCALEEC| SCALEAuthors:Juan G. Rubalcaba;
Juan G. Rubalcaba
Juan G. Rubalcaba in OpenAIREBlanca Jimeno;
Blanca Jimeno;Blanca Jimeno
Blanca Jimeno in OpenAIREhandle: 10261/304323
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 68 Powered bymore_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 07 Oct 2024 Spain, Germany, United KingdomPublisher:Wiley Funded by:NSF | CAREER: Integrating a Mic...NSF| CAREER: Integrating a Microbial Data System with an Earth System Model for Evaluating Microbial BiogeochemistryAuthors:Yongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
+9 AuthorsManuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREYongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
Daryl L. Moorhead; Robert L. Sinsabaugh;Manuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREXiaofeng Xu;
Kevin M. Geyer; Linchuan Fang;Xiaofeng Xu
Xiaofeng Xu in OpenAIREPete Smith;
Josep Peñuelas;Pete Smith
Pete Smith in OpenAIREYakov Kuzyakov;
Yakov Kuzyakov
Yakov Kuzyakov in OpenAIREJi Chen;
AbstractMicrobial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 122 Powered bymore_vert Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, DenmarkPublisher:Wiley Authors:Aya Permin;
Aline B. Horwath;Aya Permin
Aya Permin in OpenAIREDaniel B. Metcalfe;
Daniel B. Metcalfe
Daniel B. Metcalfe in OpenAIREAnders Priemé;
+1 AuthorsAnders Priemé
Anders Priemé in OpenAIREAya Permin;
Aline B. Horwath;Aya Permin
Aya Permin in OpenAIREDaniel B. Metcalfe;
Daniel B. Metcalfe
Daniel B. Metcalfe in OpenAIREAnders Priemé;
Anders Priemé
Anders Priemé in OpenAIREKathrin Rousk;
Kathrin Rousk
Kathrin Rousk in OpenAIREhandle: 1893/34455
Abstract Tropical mountain cloud forests (TMCF) harbour a high bryophyte (mosses and liverworts) biomass and diversity. Furthermore, the high air humidity makes these forests well suited for bryophyte‐associated nitrogen (N2) fixation by cyanobacteria, providing a potentially important source of N input to the ecosystem. However, few studies have assessed bryophyte‐associated N input in these ecosystems, and these have focused on epiphytic bryophytes, whereas abundant ground‐covering bryophytes have not been included. In this study, we quantified N2 fixation rates associated with bryophytes, focusing on ground‐covering mosses in a neotropical mountain cloud forest. Furthermore, we identified the effects of climate change (higher temperature 10 vs. 20° and lower bryophyte moisture level 50% vs. 100%) on N2 fixation across bryophyte species and groups (mosses and liverworts). Nitrogen fixation rates associated with ground‐covering moss species were up to 2 kg N ha−1 year−1, which is comparable to other N inputs (e.g. N deposition) in tropical cloud forests. Furthermore, changes in temperature showed little effect on N2 fixation, but low moisture levels significantly suppressed N2 fixation activity. We found low N2 fixation activity associated with the investigated liverworts. Our results demonstrate the importance of ground‐covering, moss‐associated N2 fixation as a N source in tropical cloud forests and suggest that predicted future declines in precipitation in these systems will reduce N inputs from bryophyte‐associated cyanobacteria. Read the free Plain Language Summary for this article on the Journal blog.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34455Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34455Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 DenmarkPublisher:Oxford University Press (OUP) Authors:Madsen, Mette Vestergård;
Henry, Frédéric; Rangel-Castro, J. Ignacio;Madsen, Mette Vestergård
Madsen, Mette Vestergård in OpenAIREMichelsen, Anders;
+2 AuthorsMichelsen, Anders
Michelsen, Anders in OpenAIREMadsen, Mette Vestergård;
Henry, Frédéric; Rangel-Castro, J. Ignacio;Madsen, Mette Vestergård
Madsen, Mette Vestergård in OpenAIREMichelsen, Anders;
Michelsen, Anders
Michelsen, Anders in OpenAIREProsser, James I.;
Christensen, Søren;Prosser, James I.
Prosser, James I. in OpenAIREpmid: 18312375
Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.
FEMS Microbiology Ec... arrow_drop_down University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00447.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FEMS Microbiology Ec... arrow_drop_down University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2008.00447.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | ANTSEC| ANTSAuthors: Morten Nedergaard Grell; Kåre Lehmann Nielsen;Sanne Nygaard;
Sanne Nygaard
Sanne Nygaard in OpenAIRELene Lange;
+3 AuthorsLene Lange
Lene Lange in OpenAIREMorten Nedergaard Grell; Kåre Lehmann Nielsen;Sanne Nygaard;
Sanne Nygaard
Sanne Nygaard in OpenAIRELene Lange;
Lene Lange
Lene Lange in OpenAIREJacobus J. Boomsma;
Tore Linde; Tore Linde;Jacobus J. Boomsma
Jacobus J. Boomsma in OpenAIREThe fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants.A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place.The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants discarding old fungal biomass from this part of the garden. The transcripts that we found suggest that actively growing mycelium in the bottom of gardens helps to maintain an optimal water balance to avoid hyphal disintegration, so the ants can ultimately discard healthy rather than decaying and diseased garden material, and to buffer negative effects of varying availability and quality of substrate across the seasons.
BMC Genomics arrow_drop_down Copenhagen University Research Information SystemArticle . 2013Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-14-928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BMC Genomics arrow_drop_down Copenhagen University Research Information SystemArticle . 2013Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-14-928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 1998 France, Denmark, SwitzerlandPublisher:Geological Society of London Authors: Raynaud, D.; Chappellaz, J.; Blunier, T.;Abstract The Antarctic and Greenland ice contains an almost direct record of past atmospheric CH 4 . The record over the last 200 years reveals a spectacular 150% increase of the CH 4 atmospheric mixing ratio since pre-industrial times. At the scale of a glacial-interglacial cycle the record shows a remarkable correlation with climatic changes, with high (low) CH 4 levels during warm (cold) periods. A striking feature of the glacial-interglacial CH 4 record is the presence of large and abrupt (at the scale of a century or less) changes during the last glaciation and glacial-interglacial transition. The classical interpretation for the origin of CH 4 changes prior to the industrial era involves mainly the wetland source. In the context of gas hydrates the question is to know whether the past ice-core record contains fingerprints of catastrophic hydrate release (CHR). We currently conclude that the available record shows no evidence for CHR but additional ice-core analyses are necessary to reach a more definitive conclusion.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPart of book or chapter of book . 1998Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 1998Geological Society London Special PublicationsArticle . 1998 . Peer-reviewedLicense: STM Policy #2Data sources: CrossrefUniversité Grenoble Alpes: HALPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/gsl.sp.1998.137.01.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPart of book or chapter of book . 1998Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 1998Geological Society London Special PublicationsArticle . 1998 . Peer-reviewedLicense: STM Policy #2Data sources: CrossrefUniversité Grenoble Alpes: HALPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUPart of book or chapter of book . 1998Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/gsl.sp.1998.137.01.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:Ovid Technologies (Wolters Kluwer Health) Funded by:EC | NextGen IO, NIH | Liver-enriched Transcript...EC| NextGen IO ,NIH| Liver-enriched Transcription Factors as Prognostic Markers and Therapeutic Targets in Alcoholic HepatitisAuthors:Goikoetxea-Usandizaga, Naroa;
Goikoetxea-Usandizaga, Naroa
Goikoetxea-Usandizaga, Naroa in OpenAIREBravo, Miren;
Bravo, Miren
Bravo, Miren in OpenAIREEgia-Mendikute, Leire;
Egia-Mendikute, Leire
Egia-Mendikute, Leire in OpenAIREAbecia, Leticia;
+38 AuthorsAbecia, Leticia
Abecia, Leticia in OpenAIREGoikoetxea-Usandizaga, Naroa;
Goikoetxea-Usandizaga, Naroa
Goikoetxea-Usandizaga, Naroa in OpenAIREBravo, Miren;
Bravo, Miren
Bravo, Miren in OpenAIREEgia-Mendikute, Leire;
Egia-Mendikute, Leire
Egia-Mendikute, Leire in OpenAIREAbecia, Leticia;
Abecia, Leticia
Abecia, Leticia in OpenAIRESerrano-Maciá, Marina;
Urdinguio, Rocío G.;Serrano-Maciá, Marina
Serrano-Maciá, Marina in OpenAIREClos-García, Marc;
Clos-García, Marc
Clos-García, Marc in OpenAIRERodríguez-Agudo, Rubén;
Rodríguez-Agudo, Rubén
Rodríguez-Agudo, Rubén in OpenAIREAraujo-Legido, Raquel;
Araujo-Legido, Raquel
Araujo-Legido, Raquel in OpenAIRELópez-Bermudo, Lucía;
López-Bermudo, Lucía
López-Bermudo, Lucía in OpenAIREDelgado, Teresa C.;
Delgado, Teresa C.
Delgado, Teresa C. in OpenAIRELachiondo-Ortega, Sofía;
Lachiondo-Ortega, Sofía
Lachiondo-Ortega, Sofía in OpenAIREGonzález-Recio, Irene;
González-Recio, Irene
González-Recio, Irene in OpenAIREGil-Pitarch, Clàudia;
Gil-Pitarch, Clàudia
Gil-Pitarch, Clàudia in OpenAIREPeña-Cearra, Ainize;
Peña-Cearra, Ainize
Peña-Cearra, Ainize in OpenAIRESimón, Jorge;
Simón, Jorge
Simón, Jorge in OpenAIREBenedé-Ubieto, Raquel;
Ariño, Silvia;Benedé-Ubieto, Raquel
Benedé-Ubieto, Raquel in OpenAIREHerranz, Jose M.;
Herranz, Jose M.
Herranz, Jose M. in OpenAIREAzkargorta, Mikel;
Azkargorta, Mikel
Azkargorta, Mikel in OpenAIRESalazar-Bermeo, Julio;
Salazar-Bermeo, Julio
Salazar-Bermeo, Julio in OpenAIREMartí, Nuria;
Martí, Nuria
Martí, Nuria in OpenAIREVarela-Rey, Marta;
Varela-Rey, Marta
Varela-Rey, Marta in OpenAIREFalcón-Pérez, Juan M.;
Falcón-Pérez, Juan M.
Falcón-Pérez, Juan M. in OpenAIRELorenzo, Óscar;
Lorenzo, Óscar
Lorenzo, Óscar in OpenAIRENogueiras, Rubén;
Nogueiras, Rubén
Nogueiras, Rubén in OpenAIREElortza, Félix;
Elortza, Félix
Elortza, Félix in OpenAIRENevzorova, Yulia;
Nevzorova, Yulia
Nevzorova, Yulia in OpenAIRECubero, Francisco J.;
Cubero, Francisco J.
Cubero, Francisco J. in OpenAIRESaura, Domingo;
Saura, Domingo
Saura, Domingo in OpenAIREMartínez-Cruz, Luis Alfonso;
Martínez-Cruz, Luis Alfonso
Martínez-Cruz, Luis Alfonso in OpenAIRESabio, Guadalupe;
Sabio, Guadalupe
Sabio, Guadalupe in OpenAIREPalazón, Asís;
Palazón, Asís;Palazón, Asís
Palazón, Asís in OpenAIRESancho-Bru, Pau;
Sancho-Bru, Pau
Sancho-Bru, Pau in OpenAIREElguezabal, Natalia;
Elguezabal, Natalia
Elguezabal, Natalia in OpenAIREFraga, Mario F.;
Fraga, Mario F.
Fraga, Mario F. in OpenAIREÁvila, Matías A.;
Bataller, Ramón;Ávila, Matías A.
Ávila, Matías A. in OpenAIREMarín, José J. G.;
Marín, José J. G.
Marín, José J. G. in OpenAIREMartín, Franz;
Martín, Franz
Martín, Franz in OpenAIREMartínez-Chantar, María Luz;
Martínez-Chantar, María Luz
Martínez-Chantar, María Luz in OpenAIREBackground and Aims: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. Approach and Results: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD+/NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. Conclusions: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.
Hepatology arrow_drop_down HepatologyArticleLicense: http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/Data sources: SygmaHepatologyArticle . 2023 . Peer-reviewedLicense: http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/Data sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/hep.0000000000000303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 118 Powered bymore_vert Hepatology arrow_drop_down HepatologyArticleLicense: http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/Data sources: SygmaHepatologyArticle . 2023 . Peer-reviewedLicense: http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/Data sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/hep.0000000000000303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Funded by:EC | WaterSEED, EC | Agro2Circular, EC | SCALIBUREC| WaterSEED ,EC| Agro2Circular ,EC| SCALIBURAuthors:Estévez-Alonso, Ángel;
Estévez-Alonso, Ángel
Estévez-Alonso, Ángel in OpenAIREArias-Buendía, María;
Arias-Buendía, María
Arias-Buendía, María in OpenAIREPei, Ruizhe;
Pei, Ruizhe
Pei, Ruizhe in OpenAIREvan Veelen, H. Pieter J.;
+3 Authorsvan Veelen, H. Pieter J.
van Veelen, H. Pieter J. in OpenAIREEstévez-Alonso, Ángel;
Estévez-Alonso, Ángel
Estévez-Alonso, Ángel in OpenAIREArias-Buendía, María;
Arias-Buendía, María
Arias-Buendía, María in OpenAIREPei, Ruizhe;
Pei, Ruizhe
Pei, Ruizhe in OpenAIREvan Veelen, H. Pieter J.;
van Loosdrecht, Mark C.M.; Kleerebezem, Robbert;van Veelen, H. Pieter J.
van Veelen, H. Pieter J. in OpenAIREWerker, Alan;
Werker, Alan
Werker, Alan in OpenAIREpmid: 36323202
Activated sludge from municipal wastewater treatment processes can be used directly for the production of biodegradable polyesters from the family of polyhydroxyalkanoates (PHAs). However, municipal activated sludge typically cannot accumulate PHAs to very high levels and often low yields of polymer produced on substrate are observed. In the present work, it was found that the presence of calcium promotes selective growth and enrichment of the PHA-storing biomass fraction and significantly improved both PHA contents and yields. Calcium addition resulted in PHA contents of 0.60 ± 0.03 gPHA/gVSS and average PHA yields on substrate of 0.49 ± 0.03 gCODPHA/gCODHAc compared to 0.35 ± 0.01 gPHA/gVSS and 0.19 ± 0.01 gCODPHA/gCODHAc without calcium addition. After 48 h, three times more PHA was produced compared to control experiments without calcium addition. Higher PHA content and selective biomass production is proposed to be a consequence of calcium dependent increased levels of passive acetate uptake. Such more efficient substrate uptake could be related to a formation of calcium acetate complexes. Findings lead to bioprocess methods to stimulate a short-term selective growth of PHA-storing microorganisms and this enables improvements to the techno-economic feasibility for municipal waste activated sludge to become a generic resource for industrial scale PHA production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.119259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 20 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2022.119259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu