Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
    Clear
  • Source
    Clear
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
113 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • EU
  • ES
  • English
  • CNR ExploRA

  • Authors: Zambianchi; Enrico; Iermano; Ilaria; +4 Authors
    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Part of book or chapter of book . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Part of book or chapter of book . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zoppi F.; Castelli D.; Tylor S.;

    The BELIEF Project is a Coordination Action funded by the European Commission in the context of the FP6 and FP7 Programmes. It aims to create a platform where e-Infrastructures providers and users can collaborate and exchange knowledge, ensuring that e-Infrastructures are developed and effectively used worldwide, filling the gap separating the e-Infrastructures providers from the users, and thus contribute to the emergence of a competitive knowledge-based economy. To create this synergy among multi-disciplinary communities, BELIEF created a one-stop-shop providing a Portal and a Digital Library with a huge number of e-Infrastructures open access publications. The Digital Library offers uniform access to multimedia documentation providing continuously updated information on e-Infrastructures-related projects, initiatives and events. The contents are harvested from different sources, such as projects web sites, repositories and databases. The DL - implemented on top of the OpenDLib Digital Library Management System - provides services to support the submission, description, searching, browsing, retrieval, access, preservation and visualization of multimedia documents. Although designed to meet the needs of the e-Infrastructures community, the technology adopted by BELIEF can be easily adapted to meet the information and collaborative needs of other scientific communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2010
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2010
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Antonio F. Logrieco; Giuseppina Mulè; Antonia Susca; Giancarlo Perrone; +1 Authors

    Food contamination is common during the production, distribution and consumption of processed and agricultural commodities all over the world. Knowledge of the mycobiota in crops and food is essential for understanding and prevention of spoilage. In addition to possible spoilage, the growth of filamentous fungi in food can result in the production of mycotoxins and other secondary metabolites, which may impact human and animal health. Therefore, among the food safety issues, the occurrence of fungal species able to produce toxic metabolites on the agro-food products has acquired great relevance (1). The production of mycotoxins is commonly species-specific, but it also influenced by other factors, like substrate, genetic variation, temperature, water activity etc. The knowledge of the molecular mechanisms that regulate these interactions remains very limited, however its understanding is fundamental to determine health risks associated with mold-spoiled foods and beverages. Mycotoxins are produced by a wide variety of molds, mainly Aspergillus, Fusarium and Penicillium. In general, five mycotoxins are the most significant agriculturally and have a worldwide distribution: aflatoxins, deoxynivalenol, fumonisins, ochratoxin A, and zearalenone. In addition, T-2 and HT-2 toxins can be a problem in cool temperate and generally wet areas, and Patulin is receiving increasing attention (2). Studies on toxigenic molds and its biodiversity have become highly relevant, due to the increased awareness of mycotoxins impact on human and animal health, the public concern for food safety and wastage, as well as the effects of climate change, which generate new combinations mycotoxins/host plants/geographical areas. Economic losses due to mycotoxins are high in both domestic and international trades. Also costs because affection of human and animal health are relevant and observed both in developed and developing Countries. Climate change also influence the physiology of the crops and the biodiversity of the fungi, and are modifying the risk maps of mycotoxin contamination. In this respect, recent advances confirm the importance of providing provisional models for mycotoxin occurrence in relation to climate change (3). In this context some important future challenges are in progress :i) impact reduction of fungi in staple food/feed chains; ii) new methodologies for detection and quantification; iii) new ecophysiology data in the context of climate change scenarios; iv) development of novel prevention strategies at different stages of the food and feed chains. Finally, over the past 50 years, diets in all countries have converged on a few sources of dietary starch, increasing the risk of exposure to mycotoxins, that can be evaluated by monitoring biological fluids such as blood and urine. The health risk from multi-mycotoxin exposure is still unclear since the additives and/or synergistic effects of mycotoxins have been poorly investigated. Nevertheless, the growing interest in understanding the combined effect of mycotoxin mixtures, will improve the current risk assessment capability at worldwide level.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: A. Manzella1; S. Giamberini1; G. Montegrossi1; D. Scrocca1; +18 Authors

    The main objective of this report is to present a set of recommendations to harmonize environmental regulations and best practices of deep geothermal for a series of selected technical and process-related topics. The topics and the criteria adopted for their selection are described in detail in other GEOENVI reports resulting from the activity of Work Package 2 (Map environmental matters for deep geothermal energy) and Work Package 4 (Engage with decision-makers: recommendations for harmonisation of regulations)1. This report first describes the regulatory barriers and gaps and then proposes recommendations to overcome each topic's identified issues. In the first place, the report addresses the four chosen technical topics: o Seismicity, i.e., the potential modification of natural seismic activity during the geothermal projects' development and operation o Aquifers' interference, i.e., the potential connection of aquifers via the wellbore, the disturbance of non-targeted aquifers, and the modifications of reservoirs' physiochemical status; o Aeriform emissions, i.e., the potential geothermal fluid aeriform emissions during wells' drilling and plant operation; o Discharge of geothermal fluids, i.e., the potential chemical and temperature effects due both to discharge of geothermal water and drilling fluids onto and into surface/underground water bodies and reinjection of geothermal fluids after production. Next, the report provides recommendations for five process topics, which are not directly related to technologies but instead refer to practices that impact the development of the geothermal market and reference environmental aspects. These regulatory challenges and cross-cutting topics are: o Complex licensing and delays; o Environmental Impact Assessment, taking into account the nature of individual projects; o Information sharing, including the communication of environmental data and information; o Creating local benefits as positive impact linked to geothermal development; Organizing public participation in the development of geothermal projects. All data related to the technical and process topics collected at the national level accompany the document as tables in the Annex.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Autori: Age Laine, Liina Vaher, Age Laine (CE) Contributors: Age Laine, Liina Vaher, Age Laine (CE) Robert Miskuf, Federica Torcoli (PEDAL) Gabriela Mezeiova (CVTI SR) Fernando Ferri, Patrizia Grifoni; Noemi Biancone, Chiara Bicchielli (CNR) Eskil Welan (DBT) Dana Remes (EFPC) Justinas Lapiens (SD) Catarina Pereira, Alexandre Almeida (LOBA) Thomas Blanchet (NEXUS) Robert Richter (TUB) Klara Heilingbrunner (IVSZ) Olena Nedozhogina, Hans Hõrak (UT) Francesco Niglia (LCU);

    The elements needed to sustain HubIT results and create impact beyond the project implementation have been built into the whole concept of the project. Throughout its implementation, the project has engaged with other projects and experts to have wide outreach and prepare the ground for exploiting the results through its networks. The HubIT sustainability and exploitation plan introduces the concept of a HubIT hub network which is proposed with the aim to: o sustain and extend impacts reached with the HubIT project, o ensure widest utilisation of project results and spread of word about their benefits, o provide a support network for projects and professionals in ICT, social sciences and humanities with a structure that enables and encourages inter-disciplinary cooperation on an international level. This report starts with chapter 2 which gives an overview of the tools and methodologies available for exploitation. Chapter 3 introduces the common approach of the HubIT consortium to t sustain the results after the end of the project. Chapter 4 presents the individual exploitation plan of each consortium partner, chapter 5 the impact of the exploitation activities and future outlooks.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CNR ExploRAarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CNR ExploRA
    Report . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CNR ExploRAarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CNR ExploRA
      Report . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: M.R. Mosquera-Losada1; O. Crespo2; F.Balaguer3; F. Liagre4; +3 Authors

    Poplar is a fast-growing tree with high industrial demand for its timber which can be allocated to different uses such as plywood, sawwood, particle board, bioenergy, etc. Poplar adequacy as component of silvoarable practices is based on the reduced amount of light it intercepts when compared with other tree species, the great knowledge about its silviculture and decades of genetic improvement, its integration in the agricultural landscape and its shorter rotation. Agroforestry practices with poplar in Europe include alley cropping to produce biomass as renewable energy and silvoarable practices. The use of poplar as part of an agricultural plot increases productivity but also promotes environment protection and carbon sequestration while enhancing social benefits. This paper aims at reviewing the main poplar plantation areas in Spain, Italy and France and the potential of combining it with crops and also identifies the main drawbacks to implement agroforestry with poplar from a policy point of view.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2016
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2016
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bianchi, G.; Borgia, S.; Siemens, W.; Macheta, A., et al.;
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: D. Sciti;

    The main goals of task 8.2.5, are the development of several UHTCs materials and the study of their fundamental properties. The investigation is mainly concerned with light absorption and emission at room and high temperatures and their correlation to material parameters such as compositions, porosity and surface finishing with the thermo-mechanical properties, like mechanical strength at room and high temperature, thermal conductivity, oxidation and thermal shock resistance. In the first year of the project the research activity was devoted to production and preliminary optical analysis of various carbides of zirconium, hafnium and tantalum. Therefore, in this progress report, we describe the production of carbides of Zr, Hf and Ta from with microstructural characterization and optical properties.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Michele Rinaldi1; Salvatore Antonio Colecchia1; Sergio Ruggieri2; Anna Balenzano3; +2 Authors

    Over the ApulianTavoliere (southern Italy), an activity of ground data collection for the validation of Earth Observation (EO) products is ongoing since 2014. The site is a large agricultural area (about 4000 km2) in the Apulian region (Italy). Over the area, measurements of the main soil and vegetation parameters, relevant for agricultural applications, have been carried out according to international protocols. This article describes the test site, the measurement campaigns and the related research projects. Moreover, examples of the obtained products and services are also given.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2020
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2020
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
113 Research products
  • Authors: Zambianchi; Enrico; Iermano; Ilaria; +4 Authors
    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Part of book or chapter of book . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Part of book or chapter of book . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zoppi F.; Castelli D.; Tylor S.;

    The BELIEF Project is a Coordination Action funded by the European Commission in the context of the FP6 and FP7 Programmes. It aims to create a platform where e-Infrastructures providers and users can collaborate and exchange knowledge, ensuring that e-Infrastructures are developed and effectively used worldwide, filling the gap separating the e-Infrastructures providers from the users, and thus contribute to the emergence of a competitive knowledge-based economy. To create this synergy among multi-disciplinary communities, BELIEF created a one-stop-shop providing a Portal and a Digital Library with a huge number of e-Infrastructures open access publications. The Digital Library offers uniform access to multimedia documentation providing continuously updated information on e-Infrastructures-related projects, initiatives and events. The contents are harvested from different sources, such as projects web sites, repositories and databases. The DL - implemented on top of the OpenDLib Digital Library Management System - provides services to support the submission, description, searching, browsing, retrieval, access, preservation and visualization of multimedia documents. Although designed to meet the needs of the e-Infrastructures community, the technology adopted by BELIEF can be easily adapted to meet the information and collaborative needs of other scientific communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2010
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2010
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrea Pisanelli; Claudia Consalvo; Giuseppe Russo; Marco Lauteri; +1 Authors

    It is recognised that several constraints such as the lack of knowledge and expertise of farmers, land users and policy makers concerning agroforestry systems establishment and management hamper the adoption of agroforestry systems (Camilli et al. 2017). AFINET project acts at EU level in order to direct research results into practice and promote innovative ideas to face challenges and solve practitioners' problems. AFINET proposes an innovative methodology based on the creation of a European Interregional Network, linking different Regional Agroforestry Innovation Networks (RAINs). RAINs represent different climatic, geographical, social and cultural conditions and enclose a balanced representation of the key actors with complementary types of expertise (farmers, policy makers, advisory services, extension services, etc.). The Italian RAIN is focused on the Extra-Virgin Olive Oil (EVOO) value chain, with the main aim to promote agroforestry management of local olive orchards. Olive trees are still managed traditionally, often in marginal sites, with minimal mechanization and relatively low external inputs such as chemical treatments in comparison to other crops. The presence of permanent crops (olive trees) guarantees a partially tree cover reducing hydrogeological risk. Soil management usually keeps natural grassing reducing soil carbon emission and increasing soil fertility (Bateni et al. 2017). Intercropping with cereals and/or fodder legumes and livestock can also be practiced in olive orchards, increasing the complexity of the olive tree multifunctional system. Moreover, olive orchards can be managed as agroforestry systems since they can be intercropped with arable crops (cereals, legumes) and/or combined with livestock (sheep, poultry). The RAIN process, involving local stakeholders, highlighted the main bottlenecks of the EVOO value chain related to communication and dissemination of knowledge, technical and management aspects, market and policy. In order to contrast bottlenecks and exploit opportunities of the olive oil supply chain, the identified innovations are: i) adoption of best practices: testing and experimenting innovative agroforestry systems introducing different crop/animals species and varieties; ii) improve the management of the olive orchards: encouraging and increasing the organic production; iii) valorisation of olive processing residues: identifying and testing innovative products (bio-materials, olive paste as example); iv) arise the awareness among consumers: educating people about the benefits of olive oil consumption, creating networks among stakeholders, improving marketing and commercialization. Creating a Bio-district, defined as a geographical area where farmers, citizens, tourist operators, associations and public authorities enter into an agreement for the sustainable management of local resources, emerged a powerful tool to implement the innovation in the local EVOO value chain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Antonio F. Logrieco; Giuseppina Mulè; Antonia Susca; Giancarlo Perrone; +1 Authors

    Food contamination is common during the production, distribution and consumption of processed and agricultural commodities all over the world. Knowledge of the mycobiota in crops and food is essential for understanding and prevention of spoilage. In addition to possible spoilage, the growth of filamentous fungi in food can result in the production of mycotoxins and other secondary metabolites, which may impact human and animal health. Therefore, among the food safety issues, the occurrence of fungal species able to produce toxic metabolites on the agro-food products has acquired great relevance (1). The production of mycotoxins is commonly species-specific, but it also influenced by other factors, like substrate, genetic variation, temperature, water activity etc. The knowledge of the molecular mechanisms that regulate these interactions remains very limited, however its understanding is fundamental to determine health risks associated with mold-spoiled foods and beverages. Mycotoxins are produced by a wide variety of molds, mainly Aspergillus, Fusarium and Penicillium. In general, five mycotoxins are the most significant agriculturally and have a worldwide distribution: aflatoxins, deoxynivalenol, fumonisins, ochratoxin A, and zearalenone. In addition, T-2 and HT-2 toxins can be a problem in cool temperate and generally wet areas, and Patulin is receiving increasing attention (2). Studies on toxigenic molds and its biodiversity have become highly relevant, due to the increased awareness of mycotoxins impact on human and animal health, the public concern for food safety and wastage, as well as the effects of climate change, which generate new combinations mycotoxins/host plants/geographical areas. Economic losses due to mycotoxins are high in both domestic and international trades. Also costs because affection of human and animal health are relevant and observed both in developed and developing Countries. Climate change also influence the physiology of the crops and the biodiversity of the fungi, and are modifying the risk maps of mycotoxin contamination. In this respect, recent advances confirm the importance of providing provisional models for mycotoxin occurrence in relation to climate change (3). In this context some important future challenges are in progress :i) impact reduction of fungi in staple food/feed chains; ii) new methodologies for detection and quantification; iii) new ecophysiology data in the context of climate change scenarios; iv) development of novel prevention strategies at different stages of the food and feed chains. Finally, over the past 50 years, diets in all countries have converged on a few sources of dietary starch, increasing the risk of exposure to mycotoxins, that can be evaluated by monitoring biological fluids such as blood and urine. The health risk from multi-mycotoxin exposure is still unclear since the additives and/or synergistic effects of mycotoxins have been poorly investigated. Nevertheless, the growing interest in understanding the combined effect of mycotoxin mixtures, will improve the current risk assessment capability at worldwide level.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: A. Manzella1; S. Giamberini1; G. Montegrossi1; D. Scrocca1; +18 Authors

    The main objective of this report is to present a set of recommendations to harmonize environmental regulations and best practices of deep geothermal for a series of selected technical and process-related topics. The topics and the criteria adopted for their selection are described in detail in other GEOENVI reports resulting from the activity of Work Package 2 (Map environmental matters for deep geothermal energy) and Work Package 4 (Engage with decision-makers: recommendations for harmonisation of regulations)1. This report first describes the regulatory barriers and gaps and then proposes recommendations to overcome each topic's identified issues. In the first place, the report addresses the four chosen technical topics: o Seismicity, i.e., the potential modification of natural seismic activity during the geothermal projects' development and operation o Aquifers' interference, i.e., the potential connection of aquifers via the wellbore, the disturbance of non-targeted aquifers, and the modifications of reservoirs' physiochemical status; o Aeriform emissions, i.e., the potential geothermal fluid aeriform emissions during wells' drilling and plant operation; o Discharge of geothermal fluids, i.e., the potential chemical and temperature effects due both to discharge of geothermal water and drilling fluids onto and into surface/underground water bodies and reinjection of geothermal fluids after production. Next, the report provides recommendations for five process topics, which are not directly related to technologies but instead refer to practices that impact the development of the geothermal market and reference environmental aspects. These regulatory challenges and cross-cutting topics are: o Complex licensing and delays; o Environmental Impact Assessment, taking into account the nature of individual projects; o Information sharing, including the communication of environmental data and information; o Creating local benefits as positive impact linked to geothermal development; Organizing public participation in the development of geothermal projects. All data related to the technical and process topics collected at the national level accompany the document as tables in the Annex.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Autori: Age Laine, Liina Vaher, Age Laine (CE) Contributors: Age Laine, Liina Vaher, Age Laine (CE) Robert Miskuf, Federica Torcoli (PEDAL) Gabriela Mezeiova (CVTI SR) Fernando Ferri, Patrizia Grifoni; Noemi Biancone, Chiara Bicchielli (CNR) Eskil Welan (DBT) Dana Remes (EFPC) Justinas Lapiens (SD) Catarina Pereira, Alexandre Almeida (LOBA) Thomas Blanchet (NEXUS) Robert Richter (TUB) Klara Heilingbrunner (IVSZ) Olena Nedozhogina, Hans Hõrak (UT) Francesco Niglia (LCU);

    The elements needed to sustain HubIT results and create impact beyond the project implementation have been built into the whole concept of the project. Throughout its implementation, the project has engaged with other projects and experts to have wide outreach and prepare the ground for exploiting the results through its networks. The HubIT sustainability and exploitation plan introduces the concept of a HubIT hub network which is proposed with the aim to: o sustain and extend impacts reached with the HubIT project, o ensure widest utilisation of project results and spread of word about their benefits, o provide a support network for projects and professionals in ICT, social sciences and humanities with a structure that enables and encourages inter-disciplinary cooperation on an international level. This report starts with chapter 2 which gives an overview of the tools and methodologies available for exploitation. Chapter 3 introduces the common approach of the HubIT consortium to t sustain the results after the end of the project. Chapter 4 presents the individual exploitation plan of each consortium partner, chapter 5 the impact of the exploitation activities and future outlooks.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CNR ExploRAarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CNR ExploRA
    Report . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CNR ExploRAarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CNR ExploRA
      Report . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: M.R. Mosquera-Losada1; O. Crespo2; F.Balaguer3; F. Liagre4; +3 Authors

    Poplar is a fast-growing tree with high industrial demand for its timber which can be allocated to different uses such as plywood, sawwood, particle board, bioenergy, etc. Poplar adequacy as component of silvoarable practices is based on the reduced amount of light it intercepts when compared with other tree species, the great knowledge about its silviculture and decades of genetic improvement, its integration in the agricultural landscape and its shorter rotation. Agroforestry practices with poplar in Europe include alley cropping to produce biomass as renewable energy and silvoarable practices. The use of poplar as part of an agricultural plot increases productivity but also promotes environment protection and carbon sequestration while enhancing social benefits. This paper aims at reviewing the main poplar plantation areas in Spain, Italy and France and the potential of combining it with crops and also identifies the main drawbacks to implement agroforestry with poplar from a policy point of view.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2016
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2016
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bianchi, G.; Borgia, S.; Siemens, W.; Macheta, A., et al.;
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: D. Sciti;

    The main goals of task 8.2.5, are the development of several UHTCs materials and the study of their fundamental properties. The investigation is mainly concerned with light absorption and emission at room and high temperatures and their correlation to material parameters such as compositions, porosity and surface finishing with the thermo-mechanical properties, like mechanical strength at room and high temperature, thermal conductivity, oxidation and thermal shock resistance. In the first year of the project the research activity was devoted to production and preliminary optical analysis of various carbides of zirconium, hafnium and tantalum. Therefore, in this progress report, we describe the production of carbides of Zr, Hf and Ta from with microstructural characterization and optical properties.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Michele Rinaldi1; Salvatore Antonio Colecchia1; Sergio Ruggieri2; Anna Balenzano3; +2 Authors

    Over the ApulianTavoliere (southern Italy), an activity of ground data collection for the validation of Earth Observation (EO) products is ongoing since 2014. The site is a large agricultural area (about 4000 km2) in the Apulian region (Italy). Over the area, measurements of the main soil and vegetation parameters, relevant for agricultural applications, have been carried out according to international protocols. This article describes the test site, the measurement campaigns and the related research projects. Moreover, examples of the obtained products and services are also given.

    CNR ExploRAarrow_drop_down
    CNR ExploRA
    Conference object . 2020
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      CNR ExploRAarrow_drop_down
      CNR ExploRA
      Conference object . 2020
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph