- home
- Advanced Search
- Energy Research
- natural sciences
- 6. Clean water
- NL
- EU
- Energy Research
- natural sciences
- 6. Clean water
- NL
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Sriyana, Ignatius (author); de Gijt, J.G. (author); Parahyangsari, Sri Kumala (author); Niyomukiza, John Bosco (author);In the current study, we examine the Indonesian government's watershed management program, which was established in 2001. In 2005, the Coordination Team for Rescue of Water Resources (CTRWR) was established to execute the program on a national level. However, at the time, field implementation was a sectoral interest due to the lack of program integration. To this end, the Indonesian government promoted integrated watershed management in 2009, which since then has been implemented by all stakeholders (in Top–Down management form), with application limited to preparing and planning documents. This is mainly driven by the stakeholders’ lack of understanding with regard to watershed systems as integrated management units. Field implementation results have not yet been realized, including the promotion of community-based watershed management (through Bottom–Up management). The purpose of our research was to determine the index numbers by measuring the level of cooperation between watershed management workers based on the Village Watershed Model (VWM) specifically surface water which includes six variables: planning, participation, institutional, fund sharing, gender, and management systems. The method used was an ordinal measure with the Likert scale. Our data showed successful watershed management, in which five of the six VWM variables—planning, participation, institutional, fund sharing, and management systems—were in the “good” category with indices ranging from 73.08 to 78.27. The gender variable index (69.12) was in the “medium” category.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:MDPI AG Funded by:EC | BACWIREEC| BACWIREBorjas, Zulema; Ortiz, Juan M.; Aldaz Riera, Antonio; Feliu, Juan M.; Esteve-Núñez, Abraham;doi: 10.3390/en81212416
Microbial electrochemical technologies (METs) constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD) removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC) followed in time by a microbial fuel cell (MFC) to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGThomas Fierz; Auli Niemi; Kristina Rasmusson; Vladimir Shtivelman; Jacob Bensabat; Michael Gendler; G. Wiegand; Maria Rasmusson; Fritjof Fagerlund; Julia Ghergut; Martin Sauter; Tobias Licha;AbstractThis paper presents the experimental plans and designs as well as examples of predictive modeling of a pilot-scale CO2 injection experiment at the Heletz site (Israel). The overall objective of the experiment is to find optimal ways to characterize CO2 -relevant in-situ medium properties, including field-scale residual and dissolution trapping, to explore ways of characterizing heterogeneity through joint analysis of different types of data, and to detect leakage. The experiment will involve two wells, an injection well and a monitoring well. Prior to the actual CO2 injection, hydraulic, thermal and tracer tests will be carried out for standard site characterization. The actual CO2 injection experiments will include (i) a single well injection-withdrawal experiment, with the main objective to estimate in-situ residual trapping and (ii) a two-well injection-withdrawal test with injection of CO2 in a dipole mode (injection of CO2 in one well with simultaneous withdrawal of water in the monitoring well), with the objective to understand the CO2 transport in heterogeneous geology as well as the associated dissolution and residual trapping. Tracers will be introduced in both experiments to further aid in detecting the development of the phase composition during CO2 transport. Geophysical monitoring will also be implemented. By means of modeling, different experimental sequences and injection/withdrawal patterns have been analyzed, as have parameter uncertainties. The objectives have been to (i) evaluate key aspects of the experimental design, (ii) to identify key parameters affecting the fate of the CO2 and (iii) to evaluate the relationships between measurable quantities and parameters of interest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:EC | DELTA-MIN, EC | CARBFIXEC| DELTA-MIN ,EC| CARBFIXAuthors: Iwona Galeczka; Domenik Wolff-Boenisch; Domenik Wolff-Boenisch;handle: 20.500.11937/60306
Abstract Recent publications on the successful mineralisation of carbon dioxide in basalts in Iceland and Washington State, USA, have shown that mineral storage can be a serious alternative to more mainstream geologic carbon storage efforts to lock away permanently carbon dioxide. In this study we look at the pore solution chemistry and mineralogy of basaltic glass and crystalline basalt under post-injection conditions, i.e. after rise of the pH via matrix dissolution and the first phase of carbonate formation. Experimental findings indicate that further precipitation of carbonates under more alkaline conditions is highly dependent on the availability of divalent cations. If the pore water is deficient in divalent cations, smectites and/or zeolites will dominate the secondary mineralogy of the pore space, depending on the basalt matrix. At low carbonate alkalinity no additional secondary carbonates are expected to form meaning the remaining pore space is lost to secondary silicates, irrespective of the basalt matrix. At high carbonate alkalinity, some of this limited storage volume may additionally be occupied by dawsonite −if the Na concentration in the percolating groundwater (brine) is high. Using synthetic seawater as a proxy for the groundwater composition and thus furnishing considerable amounts of divalent cations to the carbonated solution, results in massive precipitation of calcite, magnesite, and other Ca/Mg-carbonates under already moderate carbonate alkalinity. More efficient use of the basaltic storage volume can thus be attained by promoting formation of secondary carbonates compared to the inevitable formation of secondary silicate phases at higher pH. This can be done by ensuring that the pore water does not become depleted in divalent cations, even after carbonate formation. Using seawater as carbonating fluid or injection of CO2 into the basaltic oceanic crust, where saline fluids percolate, can reach this goal. However, such an approach needs sophisticated reactive transport modelling to adjust CO2 injection rates in order to avoid too rapid carbonate deposition and clogging of the pore space too close to the injection well.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 NetherlandsPublisher:Wiley Authors: Vallero, M.V.G.; Sipma, J.; Lettinga, G.; Lens, P.N.L.;doi: 10.1002/bit.20040
pmid: 15052643
AbstractSulfate reduction in salt‐rich wastewaters using unadapted granular sludge was investigated in 0.9 L UASB reactors (pH 7.0 ± 0.2; hydraulic retention time from 8–14 h) fed with acetate, propionate, or ethanol at organic loading rates up to 10 gCOD.L−1.day−1 and in excess sulfate (COD/SO of 0.5). High‐rate sulfate reduction rates (up to 3.7 gSO42‐.L−1.day−1) were achieved at salinities exceeding 50 gNaCl.L−1 and 1 gMgCl2.L−1. Sulfate reduction proceeded at a salinity of up to 70 gNaCl.L−1 and 1 gMgCl2.L−1 (corresponding to a conductivity of about 85–90 mS.cm−1), although at lower rates compared to a conductivity of 60–70 mS.cm−1. Ethanol as well as propionate were suitable substrates for sulfate reduction, with acetate and sulfide as the end products. The successful high‐rate treatment was due to the proliferation of a halotolerant incomplete oxidizing SRB population present in the unadapted inoculum sludge. Bioaugmentation of this sludge with the acetate oxidizing halotolerant SRB Desulfobacter halotolerans was unsuccessful, as the strain washed out from the UASB reactor without colonizing the UASB granules. © 2004 Wiley Periodicals, Inc.
Wageningen Staff Pub... arrow_drop_down Biotechnology and BioengineeringArticle . 2004Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Biotechnology and BioengineeringArticle . 2004Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Comparative assessment an..., UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON)Jing Meng; Zongyong Zhang; Zongyong Zhang; Yuli Shan; Lili Yang; Lili Yang; Dabo Guan; Dabo Guan; Xian Li; Xian Li;China is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China?s embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input?output models. The results showed that (1) China?s water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The ?new normal? phase witnessed the optimisation of China?s water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China?s international market brought positive effects on its domestic water use. China?s water use (116?80 billion tonnes (Bts))(9) and COD discharge (3.95?2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11?25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China?s production activities had been relocated to other developing countries.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 8 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Michel Saakes; Enver Güler; Dorothea C. Nijmeijer; David A. Vermaas;Reverse electrodialysis (RED) is a technology to generate power from mixing waters with different salinity. The net power density (i.e. power per membrane area) is determined by 1) the membrane potential, 2) the ohmic resistance, 3) the resistance due to changing bulk concentrations, 4) the boundary layer resistance and 5) the power required to pump the feed water. Previous power density estimations often neglected the latter three terms. This paper provides a set of analytical equations to estimate the net power density obtainable from RED stacks with spacers and RED stacks with profiled membranes. With the current technology, the obtained maximum net power density is calculated at 2.7 W/m2. Higher power densities could be obtained by changing the cell design, in particular the membrane resistance and the cell length. Changing these parameters one and two orders of magnitude respectively, the calculated net power density is close to 20 W/m2
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:EC | BONUS+EC| BONUS+H. E. Markus Meier; Thomas Neumann; Bärbel Müller-Karulis; Kari Eilola; Ivan Kuznetsov; Bo G. Gustafsson; Oleg P. Savchuk;In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Funded by:EC | DYNAMIXEC| DYNAMIXAuthors: Michael Martin; Lina Danielsson;doi: 10.3390/su8030282
This study will review the environmental implications of dynamic policy objectives and instruments outlined in the European Union 7th Framework Programme (EU-FP7) Project DYNAmic policy MIXes for absolute decoupling of EU resource use from economic growth (DYNAMIX) to address reductions in food consumption, food waste and a change in waste handling systems. The environmental implications of reductions in protein intake, food waste reductions, food waste management and donations are addressed using a life cycle approach to find the greenhouse gas (GHG) emissions, land use and water consumption. Data are provided from the Statistics Division of the Food and Agriculture Organization (FAOSTAT) food balance sheets for the European Union (EU) with a base year of 2010 and life cycle inventory (LCI) data from a meta-study of available GHG, land use and water consumption data for major food products. The implications are reviewed using a number of scenarios for the years 2030 and 2050 assuming policy instruments are fully effective. Results indicate that reductions in animal-based protein consumption significantly reduce environmental impacts, followed thereafter by reductions in food waste (assuming this also reduces food consumption). Despite the positive implications the policy mixes may have for targets for decoupling, they are not enough to meet GHG emissions targets for the EU outlined in the DYNAMIX project, although land and water use have no significant change compared to 2010 levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8030282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8030282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | RECONECTEC| RECONECTAbdul Naser Majidi; Zoran Vojinovic; Alida Alves; Sutat Weesakul; Arlex Sanchez; Floris Boogaard; Jeroen Kluck;As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 44 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Sriyana, Ignatius (author); de Gijt, J.G. (author); Parahyangsari, Sri Kumala (author); Niyomukiza, John Bosco (author);In the current study, we examine the Indonesian government's watershed management program, which was established in 2001. In 2005, the Coordination Team for Rescue of Water Resources (CTRWR) was established to execute the program on a national level. However, at the time, field implementation was a sectoral interest due to the lack of program integration. To this end, the Indonesian government promoted integrated watershed management in 2009, which since then has been implemented by all stakeholders (in Top–Down management form), with application limited to preparing and planning documents. This is mainly driven by the stakeholders’ lack of understanding with regard to watershed systems as integrated management units. Field implementation results have not yet been realized, including the promotion of community-based watershed management (through Bottom–Up management). The purpose of our research was to determine the index numbers by measuring the level of cooperation between watershed management workers based on the Village Watershed Model (VWM) specifically surface water which includes six variables: planning, participation, institutional, fund sharing, gender, and management systems. The method used was an ordinal measure with the Likert scale. Our data showed successful watershed management, in which five of the six VWM variables—planning, participation, institutional, fund sharing, and management systems—were in the “good” category with indices ranging from 73.08 to 78.27. The gender variable index (69.12) was in the “medium” category.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWallInternational Soil and Water Conservation ResearchArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:MDPI AG Funded by:EC | BACWIREEC| BACWIREBorjas, Zulema; Ortiz, Juan M.; Aldaz Riera, Antonio; Feliu, Juan M.; Esteve-Núñez, Abraham;doi: 10.3390/en81212416
Microbial electrochemical technologies (METs) constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD) removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC) followed in time by a microbial fuel cell (MFC) to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2015Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGThomas Fierz; Auli Niemi; Kristina Rasmusson; Vladimir Shtivelman; Jacob Bensabat; Michael Gendler; G. Wiegand; Maria Rasmusson; Fritjof Fagerlund; Julia Ghergut; Martin Sauter; Tobias Licha;AbstractThis paper presents the experimental plans and designs as well as examples of predictive modeling of a pilot-scale CO2 injection experiment at the Heletz site (Israel). The overall objective of the experiment is to find optimal ways to characterize CO2 -relevant in-situ medium properties, including field-scale residual and dissolution trapping, to explore ways of characterizing heterogeneity through joint analysis of different types of data, and to detect leakage. The experiment will involve two wells, an injection well and a monitoring well. Prior to the actual CO2 injection, hydraulic, thermal and tracer tests will be carried out for standard site characterization. The actual CO2 injection experiments will include (i) a single well injection-withdrawal experiment, with the main objective to estimate in-situ residual trapping and (ii) a two-well injection-withdrawal test with injection of CO2 in a dipole mode (injection of CO2 in one well with simultaneous withdrawal of water in the monitoring well), with the objective to understand the CO2 transport in heterogeneous geology as well as the associated dissolution and residual trapping. Tracers will be introduced in both experiments to further aid in detecting the development of the phase composition during CO2 transport. Geophysical monitoring will also be implemented. By means of modeling, different experimental sequences and injection/withdrawal patterns have been analyzed, as have parameter uncertainties. The objectives have been to (i) evaluate key aspects of the experimental design, (ii) to identify key parameters affecting the fate of the CO2 and (iii) to evaluate the relationships between measurable quantities and parameters of interest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:EC | DELTA-MIN, EC | CARBFIXEC| DELTA-MIN ,EC| CARBFIXAuthors: Iwona Galeczka; Domenik Wolff-Boenisch; Domenik Wolff-Boenisch;handle: 20.500.11937/60306
Abstract Recent publications on the successful mineralisation of carbon dioxide in basalts in Iceland and Washington State, USA, have shown that mineral storage can be a serious alternative to more mainstream geologic carbon storage efforts to lock away permanently carbon dioxide. In this study we look at the pore solution chemistry and mineralogy of basaltic glass and crystalline basalt under post-injection conditions, i.e. after rise of the pH via matrix dissolution and the first phase of carbonate formation. Experimental findings indicate that further precipitation of carbonates under more alkaline conditions is highly dependent on the availability of divalent cations. If the pore water is deficient in divalent cations, smectites and/or zeolites will dominate the secondary mineralogy of the pore space, depending on the basalt matrix. At low carbonate alkalinity no additional secondary carbonates are expected to form meaning the remaining pore space is lost to secondary silicates, irrespective of the basalt matrix. At high carbonate alkalinity, some of this limited storage volume may additionally be occupied by dawsonite −if the Na concentration in the percolating groundwater (brine) is high. Using synthetic seawater as a proxy for the groundwater composition and thus furnishing considerable amounts of divalent cations to the carbonated solution, results in massive precipitation of calcite, magnesite, and other Ca/Mg-carbonates under already moderate carbonate alkalinity. More efficient use of the basaltic storage volume can thus be attained by promoting formation of secondary carbonates compared to the inevitable formation of secondary silicate phases at higher pH. This can be done by ensuring that the pore water does not become depleted in divalent cations, even after carbonate formation. Using seawater as carbonating fluid or injection of CO2 into the basaltic oceanic crust, where saline fluids percolate, can reach this goal. However, such an approach needs sophisticated reactive transport modelling to adjust CO2 injection rates in order to avoid too rapid carbonate deposition and clogging of the pore space too close to the injection well.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 NetherlandsPublisher:Wiley Authors: Vallero, M.V.G.; Sipma, J.; Lettinga, G.; Lens, P.N.L.;doi: 10.1002/bit.20040
pmid: 15052643
AbstractSulfate reduction in salt‐rich wastewaters using unadapted granular sludge was investigated in 0.9 L UASB reactors (pH 7.0 ± 0.2; hydraulic retention time from 8–14 h) fed with acetate, propionate, or ethanol at organic loading rates up to 10 gCOD.L−1.day−1 and in excess sulfate (COD/SO of 0.5). High‐rate sulfate reduction rates (up to 3.7 gSO42‐.L−1.day−1) were achieved at salinities exceeding 50 gNaCl.L−1 and 1 gMgCl2.L−1. Sulfate reduction proceeded at a salinity of up to 70 gNaCl.L−1 and 1 gMgCl2.L−1 (corresponding to a conductivity of about 85–90 mS.cm−1), although at lower rates compared to a conductivity of 60–70 mS.cm−1. Ethanol as well as propionate were suitable substrates for sulfate reduction, with acetate and sulfide as the end products. The successful high‐rate treatment was due to the proliferation of a halotolerant incomplete oxidizing SRB population present in the unadapted inoculum sludge. Bioaugmentation of this sludge with the acetate oxidizing halotolerant SRB Desulfobacter halotolerans was unsuccessful, as the strain washed out from the UASB reactor without colonizing the UASB granules. © 2004 Wiley Periodicals, Inc.
Wageningen Staff Pub... arrow_drop_down Biotechnology and BioengineeringArticle . 2004Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Biotechnology and BioengineeringArticle . 2004Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Comparative assessment an..., UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON)Jing Meng; Zongyong Zhang; Zongyong Zhang; Yuli Shan; Lili Yang; Lili Yang; Dabo Guan; Dabo Guan; Xian Li; Xian Li;China is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China?s embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input?output models. The results showed that (1) China?s water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The ?new normal? phase witnessed the optimisation of China?s water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China?s international market brought positive effects on its domestic water use. China?s water use (116?80 billion tonnes (Bts))(9) and COD discharge (3.95?2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11?25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China?s production activities had been relocated to other developing countries.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 8 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Michel Saakes; Enver Güler; Dorothea C. Nijmeijer; David A. Vermaas;Reverse electrodialysis (RED) is a technology to generate power from mixing waters with different salinity. The net power density (i.e. power per membrane area) is determined by 1) the membrane potential, 2) the ohmic resistance, 3) the resistance due to changing bulk concentrations, 4) the boundary layer resistance and 5) the power required to pump the feed water. Previous power density estimations often neglected the latter three terms. This paper provides a set of analytical equations to estimate the net power density obtainable from RED stacks with spacers and RED stacks with profiled membranes. With the current technology, the obtained maximum net power density is calculated at 2.7 W/m2. Higher power densities could be obtained by changing the cell design, in particular the membrane resistance and the cell length. Changing these parameters one and two orders of magnitude respectively, the calculated net power density is close to 20 W/m2
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:EC | BONUS+EC| BONUS+H. E. Markus Meier; Thomas Neumann; Bärbel Müller-Karulis; Kari Eilola; Ivan Kuznetsov; Bo G. Gustafsson; Oleg P. Savchuk;In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-012-0321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Funded by:EC | DYNAMIXEC| DYNAMIXAuthors: Michael Martin; Lina Danielsson;doi: 10.3390/su8030282
This study will review the environmental implications of dynamic policy objectives and instruments outlined in the European Union 7th Framework Programme (EU-FP7) Project DYNAmic policy MIXes for absolute decoupling of EU resource use from economic growth (DYNAMIX) to address reductions in food consumption, food waste and a change in waste handling systems. The environmental implications of reductions in protein intake, food waste reductions, food waste management and donations are addressed using a life cycle approach to find the greenhouse gas (GHG) emissions, land use and water consumption. Data are provided from the Statistics Division of the Food and Agriculture Organization (FAOSTAT) food balance sheets for the European Union (EU) with a base year of 2010 and life cycle inventory (LCI) data from a meta-study of available GHG, land use and water consumption data for major food products. The implications are reviewed using a number of scenarios for the years 2030 and 2050 assuming policy instruments are fully effective. Results indicate that reductions in animal-based protein consumption significantly reduce environmental impacts, followed thereafter by reductions in food waste (assuming this also reduces food consumption). Despite the positive implications the policy mixes may have for targets for decoupling, they are not enough to meet GHG emissions targets for the EU outlined in the DYNAMIX project, although land and water use have no significant change compared to 2010 levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8030282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8030282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | RECONECTEC| RECONECTAbdul Naser Majidi; Zoran Vojinovic; Alida Alves; Sutat Weesakul; Arlex Sanchez; Floris Boogaard; Jeroen Kluck;As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 44 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu