- home
- Advanced Search
- Energy Research
- 13. Climate action
- US
- IT
- EU
- Applied Energy
- Energy Research
- 13. Climate action
- US
- IT
- EU
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: De Rossi, Francesca; Pontecorvo, Tadeo; Brown, Thomas M.;handle: 2108/213203
Abstract The field of energy harvesting holds the promise of making our buildings “smart” if effective energy sources can be developed for use in ambient indoor conditions. Photovoltaics (PV), especially in its thin flexible form for easy integration, become a prime candidate for the aim, if tailored for low-density artificial light. We designed a test system which enabled us to measure the performance of PV devices under compact fluorescent lamp (CFL) and light-emitting diode (LED) illumination at different illuminance levels and compared polycrystalline and amorphous silicon cells with our own flexible dye solar cells (DSCs). Whereas poly-Si cells, with 15% outdoor efficiency, delivered at 200 lux under CFL only 2.8 μW/cm2 power density (and an efficiency of 4.4%), a-Si specifically designed for indoors, gave 5.9 μW/cm2 and 9.2% efficiency under the same CFL conditions (and 7.5% efficiency under LED). However, we show that the customization of flexible DSCs, by simply formulating ad-hoc less-concentrated, more transparent electrolytes, enabled these devices to outperform all others, providing average power densities of 8.0 μW/cm2 and 12.4% efficiencies under 200 lux CFL (more than quadruple compared to those measured at 1 sun), and 6.6 μW/cm2 and 10% efficiency under 200 lux LED illumination.
Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: De Rossi, Francesca; Pontecorvo, Tadeo; Brown, Thomas M.;handle: 2108/213203
Abstract The field of energy harvesting holds the promise of making our buildings “smart” if effective energy sources can be developed for use in ambient indoor conditions. Photovoltaics (PV), especially in its thin flexible form for easy integration, become a prime candidate for the aim, if tailored for low-density artificial light. We designed a test system which enabled us to measure the performance of PV devices under compact fluorescent lamp (CFL) and light-emitting diode (LED) illumination at different illuminance levels and compared polycrystalline and amorphous silicon cells with our own flexible dye solar cells (DSCs). Whereas poly-Si cells, with 15% outdoor efficiency, delivered at 200 lux under CFL only 2.8 μW/cm2 power density (and an efficiency of 4.4%), a-Si specifically designed for indoors, gave 5.9 μW/cm2 and 9.2% efficiency under the same CFL conditions (and 7.5% efficiency under LED). However, we show that the customization of flexible DSCs, by simply formulating ad-hoc less-concentrated, more transparent electrolytes, enabled these devices to outperform all others, providing average power densities of 8.0 μW/cm2 and 12.4% efficiencies under 200 lux CFL (more than quadruple compared to those measured at 1 sun), and 6.6 μW/cm2 and 10% efficiency under 200 lux LED illumination.
Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You; Amir Mohajeri; Amin Mirkouei; Ethan Struhs;Abstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You; Amir Mohajeri; Amin Mirkouei; Ethan Struhs;Abstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kevin J. Kircher; K. Max Zhang;Abstract Efficient electric heat pumps have the potential to significantly reduce greenhouse gas emissions from heating and cooling buildings. However, heat pumps’ initial costs can be prohibitively high and their lifetime costs are only situationally competitive with incumbent technologies. Here we show that a business model based on heat purchase agreements could lower these barriers to heat pump adoption. In this business model, a user hosts a heat pump owned by an aggregator. The aggregator installs the heat pump at low or no initial cost to the user. The user buys the heat pump’s heat or cooling output from the aggregator. The aggregator buys the heat pump’s input electricity in the wholesale energy market and sells the flexibility of their aggregate electrical load in ancillary service markets. This paper presents the first economic analysis of heat purchase agreements as a third-party ownership model for electric heat pumps. We derive conditions under which a heat purchase agreement is mutually beneficial to the user and the aggregator. We also provide a method to fairly price heat and cooling. A case study of a typical United States home shows that a heat purchase agreement could more than double the value of a heat pump investment relative to the incumbent business model. The potential impact of this work is to reduce emissions both directly, by accelerating replacement of fossil-fueled or inefficient heating or cooling equipment, and indirectly, by helping power system operators reliably integrate wind and solar generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kevin J. Kircher; K. Max Zhang;Abstract Efficient electric heat pumps have the potential to significantly reduce greenhouse gas emissions from heating and cooling buildings. However, heat pumps’ initial costs can be prohibitively high and their lifetime costs are only situationally competitive with incumbent technologies. Here we show that a business model based on heat purchase agreements could lower these barriers to heat pump adoption. In this business model, a user hosts a heat pump owned by an aggregator. The aggregator installs the heat pump at low or no initial cost to the user. The user buys the heat pump’s heat or cooling output from the aggregator. The aggregator buys the heat pump’s input electricity in the wholesale energy market and sells the flexibility of their aggregate electrical load in ancillary service markets. This paper presents the first economic analysis of heat purchase agreements as a third-party ownership model for electric heat pumps. We derive conditions under which a heat purchase agreement is mutually beneficial to the user and the aggregator. We also provide a method to fairly price heat and cooling. A case study of a typical United States home shows that a heat purchase agreement could more than double the value of a heat pump investment relative to the incumbent business model. The potential impact of this work is to reduce emissions both directly, by accelerating replacement of fossil-fueled or inefficient heating or cooling equipment, and indirectly, by helping power system operators reliably integrate wind and solar generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Luca Evangelisti; Luca Evangelisti; Antonella Rotili; Francesco Bianchi; Giorgio Baldinelli; Gianluca Vinti; Marco Seracini; Danilo Costarelli; Francesco Asdrubali;handle: 11590/327690 , 11391/1422023 , 11585/917377
Abstract The intervention on the existing building envelope thermal insulation is the main and effective solution in order to achieve a significant reduction of the building stock energy needs. The infrared technique is the methodology of the energy diagnosis aimed to identify qualitatively the principal causes of energy losses: the presence of thermal bridges. Those weak parts of the building envelope in terms of heat transfer result not easy to treat with an energy efficiency intervention, while they are gaining importance in the buildings total energy dispersion, as the level of insulation of opaque and transparent materials is continuously increasing. It is generally possible to evaluate the energy dispersions through these zones with a deep knowledge of the materials and the geometry using a numerical method. Besides, authors proposed in the past a methodology to assess the flux passing through thermal bridges with an infrared image correctly framed. The analysis of surface temperatures of the undisturbed wall and of the zone with thermal bridge, allows to define the Incidence Factor of the thermal Bridge (Itb). This parameter is strongly affected by the thermographic image accuracy, therefore, this paper deals with the development and validation of an innovative mathematical algorithm to enhance the image resolution and the consequent accuracy of the energy losses assessment. An experimental campaign in a controlled environment (hot box apparatus) has been conducted on three typologies of thermal bridge, firstly performing the thermographic survey and then applying the enhancement algorithm to the infrared images in order to compare the Itb and the linear thermal transmittance ψ values. Results showed that the proposed methodology could bring to an accuracy improvement up to 2% of the total buildings envelope energy losses evaluated by quantitative infrared thermography. Moreover, the proposed algorithm allows the implementation of a further process applicable to the images, in order to extract the physical boundaries of the hidden materials causing the thermal bridge, so revealing itself as a useful tool to identify exactly the suitable points of intervention for the thermal bridge correction. The application of the imaging process on the quantitative infrared thermography is an innovative approach that makes more accurate the evaluation of the actual heat loss of highly insulating buildings and reaching a higher detail on the detection and treating of thermal bridges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Luca Evangelisti; Luca Evangelisti; Antonella Rotili; Francesco Bianchi; Giorgio Baldinelli; Gianluca Vinti; Marco Seracini; Danilo Costarelli; Francesco Asdrubali;handle: 11590/327690 , 11391/1422023 , 11585/917377
Abstract The intervention on the existing building envelope thermal insulation is the main and effective solution in order to achieve a significant reduction of the building stock energy needs. The infrared technique is the methodology of the energy diagnosis aimed to identify qualitatively the principal causes of energy losses: the presence of thermal bridges. Those weak parts of the building envelope in terms of heat transfer result not easy to treat with an energy efficiency intervention, while they are gaining importance in the buildings total energy dispersion, as the level of insulation of opaque and transparent materials is continuously increasing. It is generally possible to evaluate the energy dispersions through these zones with a deep knowledge of the materials and the geometry using a numerical method. Besides, authors proposed in the past a methodology to assess the flux passing through thermal bridges with an infrared image correctly framed. The analysis of surface temperatures of the undisturbed wall and of the zone with thermal bridge, allows to define the Incidence Factor of the thermal Bridge (Itb). This parameter is strongly affected by the thermographic image accuracy, therefore, this paper deals with the development and validation of an innovative mathematical algorithm to enhance the image resolution and the consequent accuracy of the energy losses assessment. An experimental campaign in a controlled environment (hot box apparatus) has been conducted on three typologies of thermal bridge, firstly performing the thermographic survey and then applying the enhancement algorithm to the infrared images in order to compare the Itb and the linear thermal transmittance ψ values. Results showed that the proposed methodology could bring to an accuracy improvement up to 2% of the total buildings envelope energy losses evaluated by quantitative infrared thermography. Moreover, the proposed algorithm allows the implementation of a further process applicable to the images, in order to extract the physical boundaries of the hidden materials causing the thermal bridge, so revealing itself as a useful tool to identify exactly the suitable points of intervention for the thermal bridge correction. The application of the imaging process on the quantitative infrared thermography is an innovative approach that makes more accurate the evaluation of the actual heat loss of highly insulating buildings and reaching a higher detail on the detection and treating of thermal bridges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Indira Jayaweera; Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky;Abstract The optimized performance of two advanced CO2 capture processes is compared to that of a monoethanolamine (MEA) baseline for a gas-powered CO2 capture retrofit of an existing coal-fired facility. The advanced temperature-swing processes utilize piperazine and mixed-salt solvents. The mixed-salt treatment involves the use of ammonia for CO2 absorption and potassium carbonate primarily to control ammonia slip. The processes are represented in terms of energy duty requirements within a modular heat integration code developed for CO2 capture modeling and optimization. The model includes a baseload coal plant, a gas-fired subsystem containing gas turbines and a heat recovery steam generator (HRSG), and a CO2 capture facility. A formal bi-objective optimization procedure is applied to determine the design (e.g., detailed HRSG components and pressure levels, gas turbine capacity, CO2 capture capacity) and time-varying operations of the facility to simultaneously maximize net present value (NPV) and minimize total capital requirement (TCR), while meeting a maximum CO2 emission intensity constraint. For a realistic scenario constructed using historical data, optimization results indicate that both advanced processes outperform MEA in both objectives, and the mixed-salt process in turn outperforms the piperazine process. Specifically, for the scenario considered, the base case mixed-salt process achieves 16% greater NPV and 14% lower TCR than the MEA process, and 10% greater NPV and 5% lower TCR than the piperazine process. A five-case sensitivity study of the mixed-salt process indicates that it is competitive with the piperazine process and consistently outperforms the MEA process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Indira Jayaweera; Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky;Abstract The optimized performance of two advanced CO2 capture processes is compared to that of a monoethanolamine (MEA) baseline for a gas-powered CO2 capture retrofit of an existing coal-fired facility. The advanced temperature-swing processes utilize piperazine and mixed-salt solvents. The mixed-salt treatment involves the use of ammonia for CO2 absorption and potassium carbonate primarily to control ammonia slip. The processes are represented in terms of energy duty requirements within a modular heat integration code developed for CO2 capture modeling and optimization. The model includes a baseload coal plant, a gas-fired subsystem containing gas turbines and a heat recovery steam generator (HRSG), and a CO2 capture facility. A formal bi-objective optimization procedure is applied to determine the design (e.g., detailed HRSG components and pressure levels, gas turbine capacity, CO2 capture capacity) and time-varying operations of the facility to simultaneously maximize net present value (NPV) and minimize total capital requirement (TCR), while meeting a maximum CO2 emission intensity constraint. For a realistic scenario constructed using historical data, optimization results indicate that both advanced processes outperform MEA in both objectives, and the mixed-salt process in turn outperforms the piperazine process. Specifically, for the scenario considered, the base case mixed-salt process achieves 16% greater NPV and 14% lower TCR than the MEA process, and 10% greater NPV and 5% lower TCR than the piperazine process. A five-case sensitivity study of the mixed-salt process indicates that it is competitive with the piperazine process and consistently outperforms the MEA process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Todd J. Toops; Sreshtha Sinha Majumdar; Josh A. Pihl;Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Todd J. Toops; Sreshtha Sinha Majumdar; Josh A. Pihl;Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Kristen S. Cetin; Youngme Seo; Jasmeet Singh; Jongho Im;Abstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: De Rossi, Francesca; Pontecorvo, Tadeo; Brown, Thomas M.;handle: 2108/213203
Abstract The field of energy harvesting holds the promise of making our buildings “smart” if effective energy sources can be developed for use in ambient indoor conditions. Photovoltaics (PV), especially in its thin flexible form for easy integration, become a prime candidate for the aim, if tailored for low-density artificial light. We designed a test system which enabled us to measure the performance of PV devices under compact fluorescent lamp (CFL) and light-emitting diode (LED) illumination at different illuminance levels and compared polycrystalline and amorphous silicon cells with our own flexible dye solar cells (DSCs). Whereas poly-Si cells, with 15% outdoor efficiency, delivered at 200 lux under CFL only 2.8 μW/cm2 power density (and an efficiency of 4.4%), a-Si specifically designed for indoors, gave 5.9 μW/cm2 and 9.2% efficiency under the same CFL conditions (and 7.5% efficiency under LED). However, we show that the customization of flexible DSCs, by simply formulating ad-hoc less-concentrated, more transparent electrolytes, enabled these devices to outperform all others, providing average power densities of 8.0 μW/cm2 and 12.4% efficiencies under 200 lux CFL (more than quadruple compared to those measured at 1 sun), and 6.6 μW/cm2 and 10% efficiency under 200 lux LED illumination.
Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: De Rossi, Francesca; Pontecorvo, Tadeo; Brown, Thomas M.;handle: 2108/213203
Abstract The field of energy harvesting holds the promise of making our buildings “smart” if effective energy sources can be developed for use in ambient indoor conditions. Photovoltaics (PV), especially in its thin flexible form for easy integration, become a prime candidate for the aim, if tailored for low-density artificial light. We designed a test system which enabled us to measure the performance of PV devices under compact fluorescent lamp (CFL) and light-emitting diode (LED) illumination at different illuminance levels and compared polycrystalline and amorphous silicon cells with our own flexible dye solar cells (DSCs). Whereas poly-Si cells, with 15% outdoor efficiency, delivered at 200 lux under CFL only 2.8 μW/cm2 power density (and an efficiency of 4.4%), a-Si specifically designed for indoors, gave 5.9 μW/cm2 and 9.2% efficiency under the same CFL conditions (and 7.5% efficiency under LED). However, we show that the customization of flexible DSCs, by simply formulating ad-hoc less-concentrated, more transparent electrolytes, enabled these devices to outperform all others, providing average power densities of 8.0 μW/cm2 and 12.4% efficiencies under 200 lux CFL (more than quadruple compared to those measured at 1 sun), and 6.6 μW/cm2 and 10% efficiency under 200 lux LED illumination.
Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu210 citations 210 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You; Amir Mohajeri; Amin Mirkouei; Ethan Struhs;Abstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You; Amir Mohajeri; Amin Mirkouei; Ethan Struhs;Abstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kevin J. Kircher; K. Max Zhang;Abstract Efficient electric heat pumps have the potential to significantly reduce greenhouse gas emissions from heating and cooling buildings. However, heat pumps’ initial costs can be prohibitively high and their lifetime costs are only situationally competitive with incumbent technologies. Here we show that a business model based on heat purchase agreements could lower these barriers to heat pump adoption. In this business model, a user hosts a heat pump owned by an aggregator. The aggregator installs the heat pump at low or no initial cost to the user. The user buys the heat pump’s heat or cooling output from the aggregator. The aggregator buys the heat pump’s input electricity in the wholesale energy market and sells the flexibility of their aggregate electrical load in ancillary service markets. This paper presents the first economic analysis of heat purchase agreements as a third-party ownership model for electric heat pumps. We derive conditions under which a heat purchase agreement is mutually beneficial to the user and the aggregator. We also provide a method to fairly price heat and cooling. A case study of a typical United States home shows that a heat purchase agreement could more than double the value of a heat pump investment relative to the incumbent business model. The potential impact of this work is to reduce emissions both directly, by accelerating replacement of fossil-fueled or inefficient heating or cooling equipment, and indirectly, by helping power system operators reliably integrate wind and solar generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kevin J. Kircher; K. Max Zhang;Abstract Efficient electric heat pumps have the potential to significantly reduce greenhouse gas emissions from heating and cooling buildings. However, heat pumps’ initial costs can be prohibitively high and their lifetime costs are only situationally competitive with incumbent technologies. Here we show that a business model based on heat purchase agreements could lower these barriers to heat pump adoption. In this business model, a user hosts a heat pump owned by an aggregator. The aggregator installs the heat pump at low or no initial cost to the user. The user buys the heat pump’s heat or cooling output from the aggregator. The aggregator buys the heat pump’s input electricity in the wholesale energy market and sells the flexibility of their aggregate electrical load in ancillary service markets. This paper presents the first economic analysis of heat purchase agreements as a third-party ownership model for electric heat pumps. We derive conditions under which a heat purchase agreement is mutually beneficial to the user and the aggregator. We also provide a method to fairly price heat and cooling. A case study of a typical United States home shows that a heat purchase agreement could more than double the value of a heat pump investment relative to the incumbent business model. The potential impact of this work is to reduce emissions both directly, by accelerating replacement of fossil-fueled or inefficient heating or cooling equipment, and indirectly, by helping power system operators reliably integrate wind and solar generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Luca Evangelisti; Luca Evangelisti; Antonella Rotili; Francesco Bianchi; Giorgio Baldinelli; Gianluca Vinti; Marco Seracini; Danilo Costarelli; Francesco Asdrubali;handle: 11590/327690 , 11391/1422023 , 11585/917377
Abstract The intervention on the existing building envelope thermal insulation is the main and effective solution in order to achieve a significant reduction of the building stock energy needs. The infrared technique is the methodology of the energy diagnosis aimed to identify qualitatively the principal causes of energy losses: the presence of thermal bridges. Those weak parts of the building envelope in terms of heat transfer result not easy to treat with an energy efficiency intervention, while they are gaining importance in the buildings total energy dispersion, as the level of insulation of opaque and transparent materials is continuously increasing. It is generally possible to evaluate the energy dispersions through these zones with a deep knowledge of the materials and the geometry using a numerical method. Besides, authors proposed in the past a methodology to assess the flux passing through thermal bridges with an infrared image correctly framed. The analysis of surface temperatures of the undisturbed wall and of the zone with thermal bridge, allows to define the Incidence Factor of the thermal Bridge (Itb). This parameter is strongly affected by the thermographic image accuracy, therefore, this paper deals with the development and validation of an innovative mathematical algorithm to enhance the image resolution and the consequent accuracy of the energy losses assessment. An experimental campaign in a controlled environment (hot box apparatus) has been conducted on three typologies of thermal bridge, firstly performing the thermographic survey and then applying the enhancement algorithm to the infrared images in order to compare the Itb and the linear thermal transmittance ψ values. Results showed that the proposed methodology could bring to an accuracy improvement up to 2% of the total buildings envelope energy losses evaluated by quantitative infrared thermography. Moreover, the proposed algorithm allows the implementation of a further process applicable to the images, in order to extract the physical boundaries of the hidden materials causing the thermal bridge, so revealing itself as a useful tool to identify exactly the suitable points of intervention for the thermal bridge correction. The application of the imaging process on the quantitative infrared thermography is an innovative approach that makes more accurate the evaluation of the actual heat loss of highly insulating buildings and reaching a higher detail on the detection and treating of thermal bridges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Luca Evangelisti; Luca Evangelisti; Antonella Rotili; Francesco Bianchi; Giorgio Baldinelli; Gianluca Vinti; Marco Seracini; Danilo Costarelli; Francesco Asdrubali;handle: 11590/327690 , 11391/1422023 , 11585/917377
Abstract The intervention on the existing building envelope thermal insulation is the main and effective solution in order to achieve a significant reduction of the building stock energy needs. The infrared technique is the methodology of the energy diagnosis aimed to identify qualitatively the principal causes of energy losses: the presence of thermal bridges. Those weak parts of the building envelope in terms of heat transfer result not easy to treat with an energy efficiency intervention, while they are gaining importance in the buildings total energy dispersion, as the level of insulation of opaque and transparent materials is continuously increasing. It is generally possible to evaluate the energy dispersions through these zones with a deep knowledge of the materials and the geometry using a numerical method. Besides, authors proposed in the past a methodology to assess the flux passing through thermal bridges with an infrared image correctly framed. The analysis of surface temperatures of the undisturbed wall and of the zone with thermal bridge, allows to define the Incidence Factor of the thermal Bridge (Itb). This parameter is strongly affected by the thermographic image accuracy, therefore, this paper deals with the development and validation of an innovative mathematical algorithm to enhance the image resolution and the consequent accuracy of the energy losses assessment. An experimental campaign in a controlled environment (hot box apparatus) has been conducted on three typologies of thermal bridge, firstly performing the thermographic survey and then applying the enhancement algorithm to the infrared images in order to compare the Itb and the linear thermal transmittance ψ values. Results showed that the proposed methodology could bring to an accuracy improvement up to 2% of the total buildings envelope energy losses evaluated by quantitative infrared thermography. Moreover, the proposed algorithm allows the implementation of a further process applicable to the images, in order to extract the physical boundaries of the hidden materials causing the thermal bridge, so revealing itself as a useful tool to identify exactly the suitable points of intervention for the thermal bridge correction. The application of the imaging process on the quantitative infrared thermography is an innovative approach that makes more accurate the evaluation of the actual heat loss of highly insulating buildings and reaching a higher detail on the detection and treating of thermal bridges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Indira Jayaweera; Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky;Abstract The optimized performance of two advanced CO2 capture processes is compared to that of a monoethanolamine (MEA) baseline for a gas-powered CO2 capture retrofit of an existing coal-fired facility. The advanced temperature-swing processes utilize piperazine and mixed-salt solvents. The mixed-salt treatment involves the use of ammonia for CO2 absorption and potassium carbonate primarily to control ammonia slip. The processes are represented in terms of energy duty requirements within a modular heat integration code developed for CO2 capture modeling and optimization. The model includes a baseload coal plant, a gas-fired subsystem containing gas turbines and a heat recovery steam generator (HRSG), and a CO2 capture facility. A formal bi-objective optimization procedure is applied to determine the design (e.g., detailed HRSG components and pressure levels, gas turbine capacity, CO2 capture capacity) and time-varying operations of the facility to simultaneously maximize net present value (NPV) and minimize total capital requirement (TCR), while meeting a maximum CO2 emission intensity constraint. For a realistic scenario constructed using historical data, optimization results indicate that both advanced processes outperform MEA in both objectives, and the mixed-salt process in turn outperforms the piperazine process. Specifically, for the scenario considered, the base case mixed-salt process achieves 16% greater NPV and 14% lower TCR than the MEA process, and 10% greater NPV and 5% lower TCR than the piperazine process. A five-case sensitivity study of the mixed-salt process indicates that it is competitive with the piperazine process and consistently outperforms the MEA process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Indira Jayaweera; Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky;Abstract The optimized performance of two advanced CO2 capture processes is compared to that of a monoethanolamine (MEA) baseline for a gas-powered CO2 capture retrofit of an existing coal-fired facility. The advanced temperature-swing processes utilize piperazine and mixed-salt solvents. The mixed-salt treatment involves the use of ammonia for CO2 absorption and potassium carbonate primarily to control ammonia slip. The processes are represented in terms of energy duty requirements within a modular heat integration code developed for CO2 capture modeling and optimization. The model includes a baseload coal plant, a gas-fired subsystem containing gas turbines and a heat recovery steam generator (HRSG), and a CO2 capture facility. A formal bi-objective optimization procedure is applied to determine the design (e.g., detailed HRSG components and pressure levels, gas turbine capacity, CO2 capture capacity) and time-varying operations of the facility to simultaneously maximize net present value (NPV) and minimize total capital requirement (TCR), while meeting a maximum CO2 emission intensity constraint. For a realistic scenario constructed using historical data, optimization results indicate that both advanced processes outperform MEA in both objectives, and the mixed-salt process in turn outperforms the piperazine process. Specifically, for the scenario considered, the base case mixed-salt process achieves 16% greater NPV and 14% lower TCR than the MEA process, and 10% greater NPV and 5% lower TCR than the piperazine process. A five-case sensitivity study of the mixed-salt process indicates that it is competitive with the piperazine process and consistently outperforms the MEA process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Italy, United KingdomPublisher:Elsevier BV Sharma S.; Micheli L.; Chang W.; Tahir A. A.; Reddy K. S.; Mallick T. K.;handle: 11573/1625646 , 10871/29641
Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2017License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaStrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.09.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Todd J. Toops; Sreshtha Sinha Majumdar; Josh A. Pihl;Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Todd J. Toops; Sreshtha Sinha Majumdar; Josh A. Pihl;Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu