Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • biological sciences
  • US

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cody P Cretini; Katherine A Galloway;

    Synopsis Climate change can directly and indirectly affect species distribution. Warming may allow for invasive species, such as apple snails, to migrate to higher latitudes where temperatures are more conducive to their survival and invasion success. Higher temperatures and lower pH ranges have been previously documented to affect the form and function of calcium carbonate shells, which serve many functions, including protection from predators and thermoregulation. This study aimed to quantify differences in the morphology and mechanical properties of invasive apple snail, Pomacea maculata, shells after altering temperature and pH. We mechanically tested shells among three five-week treatments: control, higher temperature, and lower pH. Ultimate Strength increased in shells that were exposed to higher temperatures, but Young’s Modulus and Peak Load did not differ among control, temperature, and pH treatments. Apple snails in higher temperature tanks increased their shell length over the five-week trials. Although snail morphometrics did not differ between sexes, male shells exhibited a higher Peak Load, Young’s Modulus, and Ultimate Strength compared to female shells. Our findings are consistent with previous gastropod studies, in that a lower pH is associated with a decrease in shell size, and higher temperatures yield larger snail shells with a higher ultimate strength. Peak Load did not significantly differ among treatments, which suggests that the cross-sectional area is relatively important when considering this species mechanical performance today and in future climates. Due to the intense nutritional and calcium demands of egg production, female snails may be more susceptible to weakened shells due to low pH environments caused by climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Philip S L Anderson;

    Synopsis Since the late 1800s, anthropogenic activities such as fossil fuel consumption and deforestation have driven up the concentration of atmospheric CO2 around the globe by >45%. Such heightened concentrations of carbon dioxide in the atmosphere are a leading contributor to global climate change, with estimates of a 2–5° increase in global air temperature by the end of the century. While such climatic changes are mostly considered detrimental, a great deal of experimental work has shown that increased atmospheric CO2 will actually increase growth in various plants, which may lead to increased biomass for potential harvesting or CO2 sequestration. However, it is not clear whether this increase in growth or biomass will be beneficial to the plants, as such increases may lead to weaker plant materials. In this review, I examine our current understanding of how elevated atmospheric CO2 caused by anthropogenic effects may influence plant material properties, focusing on potential effects on wood. For the first part of the review, I explore how aspects of wood anatomy and structure influence resistance to bending and breakage. This information is then used to review how changes in CO2 levels may later these aspects of wood anatomy and structure in ways that have mechanical consequences. The major pattern that emerges is that the consequences of elevated CO2 on wood properties are highly dependent on species and environment, with different tree species showing contradictory responses to atmospheric changes. In the end, I describe a couple avenues for future research into better understanding the influence of atmospheric CO2 levels on plant biomaterial mechanics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Austin M Garner; Andrew J Moura; Carla A Narvaez; Alyssa Y Stark; +1 Authors

    Synopsis Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Madeline R Lueck; Michelle M Moyer; Tanya E Cheeke;

    Abstract Aims Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. Methods and results In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. Conclusions Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicholas P Burnett; Talia Y Moore;

    Synopsis The biological structures that fill the environment around us are derived from materials produced by organisms. These biological materials are key to the mechanical function of organisms. The pathways and growth processes that produce biological materials can influence the mechanical properties of the materials, which can in turn shape the higher level function of the system into which the materials are incorporated. Characterizing a biological system requires thorough knowledge of the underlying materials, including their mechanical function, diversity, evolution, and sensitivity to the environment. Anthropogenic activity is driving rapid and widespread changes to the natural environment and global climate, which are influencing organismal growth and physiology in myriad ways. Here, we briefly introduce a collection of articles that focus on the intersection of anthropogenic activity and the mechanical function of biological materials, as part of the “Global Change in a Material World” bundle for Integrative and Comparative Biology. In addition, we provide an analysis of the current scientific literature in this field, highlighting an urgent need to better understand how changes to our world, driven by human activity, are influencing the fundamental architecture and mechanical performance of organisms across the globe.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cody P Cretini; Katherine A Galloway;

    Synopsis Climate change can directly and indirectly affect species distribution. Warming may allow for invasive species, such as apple snails, to migrate to higher latitudes where temperatures are more conducive to their survival and invasion success. Higher temperatures and lower pH ranges have been previously documented to affect the form and function of calcium carbonate shells, which serve many functions, including protection from predators and thermoregulation. This study aimed to quantify differences in the morphology and mechanical properties of invasive apple snail, Pomacea maculata, shells after altering temperature and pH. We mechanically tested shells among three five-week treatments: control, higher temperature, and lower pH. Ultimate Strength increased in shells that were exposed to higher temperatures, but Young’s Modulus and Peak Load did not differ among control, temperature, and pH treatments. Apple snails in higher temperature tanks increased their shell length over the five-week trials. Although snail morphometrics did not differ between sexes, male shells exhibited a higher Peak Load, Young’s Modulus, and Ultimate Strength compared to female shells. Our findings are consistent with previous gastropod studies, in that a lower pH is associated with a decrease in shell size, and higher temperatures yield larger snail shells with a higher ultimate strength. Peak Load did not significantly differ among treatments, which suggests that the cross-sectional area is relatively important when considering this species mechanical performance today and in future climates. Due to the intense nutritional and calcium demands of egg production, female snails may be more susceptible to weakened shells due to low pH environments caused by climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Philip S L Anderson;

    Synopsis Since the late 1800s, anthropogenic activities such as fossil fuel consumption and deforestation have driven up the concentration of atmospheric CO2 around the globe by >45%. Such heightened concentrations of carbon dioxide in the atmosphere are a leading contributor to global climate change, with estimates of a 2–5° increase in global air temperature by the end of the century. While such climatic changes are mostly considered detrimental, a great deal of experimental work has shown that increased atmospheric CO2 will actually increase growth in various plants, which may lead to increased biomass for potential harvesting or CO2 sequestration. However, it is not clear whether this increase in growth or biomass will be beneficial to the plants, as such increases may lead to weaker plant materials. In this review, I examine our current understanding of how elevated atmospheric CO2 caused by anthropogenic effects may influence plant material properties, focusing on potential effects on wood. For the first part of the review, I explore how aspects of wood anatomy and structure influence resistance to bending and breakage. This information is then used to review how changes in CO2 levels may later these aspects of wood anatomy and structure in ways that have mechanical consequences. The major pattern that emerges is that the consequences of elevated CO2 on wood properties are highly dependent on species and environment, with different tree species showing contradictory responses to atmospheric changes. In the end, I describe a couple avenues for future research into better understanding the influence of atmospheric CO2 levels on plant biomaterial mechanics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Austin M Garner; Andrew J Moura; Carla A Narvaez; Alyssa Y Stark; +1 Authors

    Synopsis Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Madeline R Lueck; Michelle M Moyer; Tanya E Cheeke;

    Abstract Aims Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. Methods and results In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. Conclusions Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicholas P Burnett; Talia Y Moore;

    Synopsis The biological structures that fill the environment around us are derived from materials produced by organisms. These biological materials are key to the mechanical function of organisms. The pathways and growth processes that produce biological materials can influence the mechanical properties of the materials, which can in turn shape the higher level function of the system into which the materials are incorporated. Characterizing a biological system requires thorough knowledge of the underlying materials, including their mechanical function, diversity, evolution, and sensitivity to the environment. Anthropogenic activity is driving rapid and widespread changes to the natural environment and global climate, which are influencing organismal growth and physiology in myriad ways. Here, we briefly introduce a collection of articles that focus on the intersection of anthropogenic activity and the mechanical function of biological materials, as part of the “Global Change in a Material World” bundle for Integrative and Comparative Biology. In addition, we provide an analysis of the current scientific literature in this field, highlighting an urgent need to better understand how changes to our world, driven by human activity, are influencing the fundamental architecture and mechanical performance of organisms across the globe.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph