Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • EU

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Bastidas Oyanedel, Juan Rodrigo;
    Bastidas Oyanedel, Juan Rodrigo
    ORCID
    Harvested from ORCID Public Data File

    Bastidas Oyanedel, Juan Rodrigo in OpenAIRE
    Mohd-Zaki, Zuhaida; orcid Pratt, Steven;
    Pratt, Steven
    ORCID
    Harvested from ORCID Public Data File

    Pratt, Steven in OpenAIRE
    orcid bw Steyer, Jean-Philippe;
    Steyer, Jean-Philippe
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Steyer, Jean-Philippe in OpenAIRE
    +1 Authors

    Membrane inlet mass spectrometry (MIMS) is useful for on-line monitoring of fermentation processes. However, readings are affected by the complex and dynamic matrix in which biological processes occur, making MIMS calibration a challenge. In this work, two calibration strategies were evaluated for measurement of typical products of acidogenic fermentation, i.e., ethanol, H(2), and CO(2) in the liquid phase, and H(2) and CO(2) in the gas phase: (1) "standard calibration", which was performed independent of fermentation experiments with sterile standards in water with a N(2) headspace, and (2) "in-process calibration" whereby fermentation was monitored concurrent with off-line analysis. Fermentation was operated in batch and continuous modes. In-process calibration was shown to be most effective for measurements of H(2) and CO(2) in both gas and liquid phases; standard calibration gave erroneous results. In the gas phase, this was due to a lower sensitivity during experiments compared to the independent standard calibration, believed to be caused by formation of a liquid film on the surface of the probe. In the liquid phase, moving from the standard calibration environment to the fermentation caused the linear relationship between the H(2) concentration and MIMS signal to change in intercept, and the relationship for CO(2) to change in slope, possibly due to dissolved ions, and related non-ideality. For ethanol, standard calibration results were fairly consistent with in-process calibration results. The main limitation with in-process calibration is the potential for a lack of variability in target concentration. This could be addressed by spiking the targeted compound at the end of the experiment. Regardless, MIMS is an ideal instrument for analysing fermentation experiments, due to its ability to measure targeted compounds semi-continuously, and due to a lack of drift over long periods.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Talanta
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2010
    Data sources: Hal
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    HAL INRAE
    Article . 2010
    Data sources: HAL INRAE
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Talanta
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2010
      Data sources: Hal
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      HAL INRAE
      Article . 2010
      Data sources: HAL INRAE
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Bastidas Oyanedel, Juan Rodrigo;
    Bastidas Oyanedel, Juan Rodrigo
    ORCID
    Harvested from ORCID Public Data File

    Bastidas Oyanedel, Juan Rodrigo in OpenAIRE
    Mohd-Zaki, Zuhaida; orcid Pratt, Steven;
    Pratt, Steven
    ORCID
    Harvested from ORCID Public Data File

    Pratt, Steven in OpenAIRE
    orcid bw Steyer, Jean-Philippe;
    Steyer, Jean-Philippe
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Steyer, Jean-Philippe in OpenAIRE
    +1 Authors

    Membrane inlet mass spectrometry (MIMS) is useful for on-line monitoring of fermentation processes. However, readings are affected by the complex and dynamic matrix in which biological processes occur, making MIMS calibration a challenge. In this work, two calibration strategies were evaluated for measurement of typical products of acidogenic fermentation, i.e., ethanol, H(2), and CO(2) in the liquid phase, and H(2) and CO(2) in the gas phase: (1) "standard calibration", which was performed independent of fermentation experiments with sterile standards in water with a N(2) headspace, and (2) "in-process calibration" whereby fermentation was monitored concurrent with off-line analysis. Fermentation was operated in batch and continuous modes. In-process calibration was shown to be most effective for measurements of H(2) and CO(2) in both gas and liquid phases; standard calibration gave erroneous results. In the gas phase, this was due to a lower sensitivity during experiments compared to the independent standard calibration, believed to be caused by formation of a liquid film on the surface of the probe. In the liquid phase, moving from the standard calibration environment to the fermentation caused the linear relationship between the H(2) concentration and MIMS signal to change in intercept, and the relationship for CO(2) to change in slope, possibly due to dissolved ions, and related non-ideality. For ethanol, standard calibration results were fairly consistent with in-process calibration results. The main limitation with in-process calibration is the potential for a lack of variability in target concentration. This could be addressed by spiking the targeted compound at the end of the experiment. Regardless, MIMS is an ideal instrument for analysing fermentation experiments, due to its ability to measure targeted compounds semi-continuously, and due to a lack of drift over long periods.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Talanta
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal
    Article . 2010
    Data sources: Hal
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    HAL INRAE
    Article . 2010
    Data sources: HAL INRAE
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Talanta
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Hal
      Article . 2010
      Data sources: Hal
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      HAL INRAE
      Article . 2010
      Data sources: HAL INRAE
      addClaim
Powered by OpenAIRE graph