- home
- Advanced Search
- Energy Research
- EU
- Energy Research
- EU
description Publicationkeyboard_double_arrow_right Conference object 2023 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Fahlbeck, Jonathan; Nilsson, Håkan; Salehi, Saeed; Arabnejad Khanouki, Mohammad Hossein;To meet the demands of a larger share of the electrical energy produced by intermittent renewable energy sources, an increasing amount of plannable energy sources is needed. One solution to handle this is to increase the amount of energy storage in the electrical grids. The most widespread energy storage technology today is by far pumped hydro storage (PHS). In an attempt to enable PHS at low-head sites, the ALPHEUS (augmenting grid stability through low head pumped hydro energy utilization and storage) EU Horizon 2020 research project was formed. In ALPHEUS, new axial flow, low-head, contra-rotating pump-turbine (CRPT) designs are investigated. A CRPT has two individual runners rotating in opposite directions. CRPTs developed within the ALPHEUS project have already been thoroughly analysed at stationary and transient operating conditions by the authors. However, the effects on the CPRT's performance due to potential cavitation on the runner blade surfaces have previously not been investigated. For that reason, the current study focuses on running cavitation simulations on a model scale CRPT using the OpenFOAM computational fluid dynamics (CFD) software. In the CFD simulations, cavitation is modelled as a two-phase liquid-vapour mixture using the interPhaseChangeDyMFoam solver. The two runner domains have a prescribed solid body rotation. Condensation and evaporation processes are handled with the Schnerr-Sauer model. Turbulence is managed with the k-omega shear stress transport-scale adaptive simulation (kOmegaSSTSAS) model. Flow-driving pressure differences over the computational domain are achieved with the headLossPressure boundary condition to emulate a larger experimental test facility of which the CRPT is part. Figure 1 shows a snapshot in time of an iso-surface (light blue) of cavitating cloud with alpha_liquid=0.9 in turbine mode. At this operating point, a small amount of cavitating flow is found by the suction side of the leading edges of the left runner, which is facing a lower reservoir. In Figure 2, the same type of iso-surface is shown, however now in pump mode. It is seen that the pump mode operating condition is much worse than the turbine mode. The cavitating cloud covers most of the suction side of the left runner, additionally, the tip-clearance region is also exposed to cavitation. Furthermore, traces of cavitation are found on the leading edges of the right runner as well as on the left small-support struts. It is thus important to, at least, analyse the pump mode to determine if and how much cavitation affects the CRPS's operating performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::84fdbfad9df4f9585ea57e1a1ac72e51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::84fdbfad9df4f9585ea57e1a1ac72e51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | SOLWARIS, EC | WASCOPEC| SOLWARIS ,EC| WASCOPAuthors: Estibaliz Aranzabe; Leire Ruiz Rubio; Jon Ander Sarasua; José Luis Vilas Vilela;Many industrial and biological interfacial processes, such as welding and breathing depend directly on wettability and surface tension phenomena. The most common methods to control the wettability are based on modifying the properties of the fluid or the substrate. The present work focuses on the use of high-frequency acoustic waves (ultrasound) for the same purpose. It is well known that ultrasound can effectively clean a surface by acoustic cavitation, hence ultrasonic cleaning technology. Besides the cleaning process itself, many authors have observed an important wettability enhancement when liquids are exposed to low and high (ultrasonic) frequency vibration. Ultrasound goes one step further as it can instantly adjust the contact angle by tuning the vibration amplitude, but there is still a lack of comprehension about the physical principles that explain this phenomenon. To shed light on it, a thermodynamic model describing how ultrasound decreases the contact angle in a three-phase wetting system has been developed. Moreover, an analytical and experimental research has been carried out in order to demonstrate that ultrasound is an important competitor to surfactants in terms of energy efficiency and environmental friendliness.
Ultrasonics Sonochem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultsonch.2021.105768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ultrasonics Sonochem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultsonch.2021.105768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2022 SwedenPublisher:Informa UK Limited Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, J. P.; Jarquin-Laguna, Antonio; Fahlbeck, Jonathan; Nilsson, Håkan;To tackle the growing demand for grid-scale energy storage, the ALPHEUS project proposes a novel low-head pumped hydro storage system aimed for coastal application in countries where the topography does not allow for traditional high-head storage. This system consists of a reversible pump-turbine technology with two contra-rotating runners coupled to their respective axial-flux motor-generators as well as a dedicated control, optimising for energy balancing and the provision of ancillary services. To better understand the integration and dynamic interaction of the individual components of the plant and to allow for the simulation of a wide variety of operating conditions and scenarios, this research aims at developing a system model coupling the hydraulic, mechanical and electrical components. Numerical results are compared and verified based on CFD simulations. While some inaccuracies have to be expected, the comparison shows an overall good match with only minor deviations in dynamic behaviour and steady state results.
Chalmers Research arrow_drop_down https://doi.org/10.1201/978100...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9781003360773-85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chalmers Research arrow_drop_down https://doi.org/10.1201/978100...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9781003360773-85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Contribution for newspaper or weekly magazine 2023 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSBricker, Jeremy; Nilsson, Håkan; Storli, Pål-Tore; Truijen, Daan; De Kooning, Jeroen; Laguna, Antonio; Terheiden, Kristina; Engel, Bernd; Goseberg, NIls; Moll, Roelof;Penetration of intermittent renewable energy sources into the power grid requires large-scale energy storage to ensure grid stability. Pumped Hydro Energy Storage (PHES) is among the most mature, environmentally friendly, and economical energy storage technologies, but has traditionally only been feasible at sites with large natural topographic gradients. ALPHEUS addresses this by developing reversible pump-turbines efficient at low heads, that operate between an enclosed inner basin (that functions as the upper or lower reservoir) and a shallow sea or lake.
Chalmers Research arrow_drop_down Chalmers ResearchContribution for newspaper or weekly magazine . 2023Data sources: Chalmers Researchadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::58f3f14071cac68144be69da6b8227d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chalmers Research arrow_drop_down Chalmers ResearchContribution for newspaper or weekly magazine . 2023Data sources: Chalmers Researchadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::58f3f14071cac68144be69da6b8227d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Fahlbeck, Jonathan; Nilsson, Håkan; Salehi, Saeed;With the increased amount of energy produced from variable renewable energy sources, such as wind and solar power, the need to store energy increases. The reason is that it is necessary to cope with the variation in energy being produced by the renewables to stabilise the electrical grids. The most widely used technology for energy storage on a large scale is today pumped hydro storage (PHS). For PHS to be economically feasible, a high head is typically required, which puts topographical constraints on where it can be built. However, the EU project ALPHEUS aims to develop PHS for low-head applications, hence allowing PHS at yet unexplored sites. In the project, new reversible counter-rotating pump-turbine (CRPT) concepts are explored as an alternative runner design for low-head situations. The CRPT consists of two runners rotating in opposite direction from one another and it is suggested that it can reach higher efficiencies and be more compact compared to a single runner arrangement. In the present work a model counter-rotating pump-turbine for the ALPHEUS project is numerically analysed with computational fluid dynamics (CFD) simulations. The simulations are carried out using unsteady CFD in OpenFOAM-v2012. In the simulations, the two runners rotate individually via prescribing a solid body rotation to the runner domains. The individually rotating runners causes a intricate rotor-rotor interaction which is resolved by the numerical model. An example of this is shown in Figure, where a complex vortical structure is developing by the runners and support-structures. Furthermore, the CRPT is in reality part of large hydraulic system which effects the performance of the machine. The system includes bends, valves, long pipes, and two large water reservoirs. To restrict the size of the computational domain, the novel \verb|headLossPressure| boundary condition, developed by Fahlbeck et al., is used to include the main effects of the hydraulic system. To summarise, this study will show the potentials with a CPRT in a PHS application through CFD simulations, explain the used numerical framework, and demonstrate a use case for the new headLossPressure boundary condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::e407be254947646b9730771ab5c3963a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::e407be254947646b9730771ab5c3963a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 16 Jul 2020 Switzerland, United KingdomPublisher:Wiley Funded by:EC | BIOELEEC| BIOELEWenyu Wang; Patrick N. Stipp; Patrick N. Stipp; Yan Yan Shery Huang; Karim Ouaras; Saeed Fathi;pmid: 32510871
AbstractFreely suspended nanofibers, such as spider silk, harnessing their small diameter (sub‐micrometer) and spanning fiber morphology, behave as a nonresonating acoustic sensor. The associated sensing characteristics, departing from conventional resonant acoustic sensors, could be of tremendous interest for the development of high sensitivity, broadband audible sensors for applications in environmental monitoring, biomedical diagnostics, and internet‐of‐things. Herein, a low packing density, freely suspended nanofiber mesh with a piezoelectric active polymer is fabricated, demonstrating a self‐powered acoustic sensing platform with broad sensitivity bandwidth covering 200–5000 Hz at hearing‐safe sound pressure levels. Dynamic near‐field electrospinning is developed to fabricate in situ poled poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) nanofiber mesh (average fiber diameter ≈307 nm), exhibiting visible light transparency greater than 97%. With the ability to span the nanomesh across a suspension distance of 3 mm with minimized fiber stacking (≈18% fiber packing density), individual nanofibers can freely imitate the acoustic‐driven fluctuation of airflow in a collective manner, where piezoelectricity is harvested at two‐terminal electrodes for direct signal collection. Applications of the nanofiber mesh in music recording with good signal fidelity are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202000581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202000581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, Justus Peter; Truijen, Daan; Laguna, Antonio Jarquin; De Kooning, Jeroen; +3 AuthorsHoffstaedt, Justus Peter; Truijen, Daan; Laguna, Antonio Jarquin; De Kooning, Jeroen; Stockman, Kurt; Fahlbeck, Jonathan; Nilsson, Håkan;Abstract Large-scale energy storage solutions are crucial to ensure grid stability and reliability in the ongoing energy transition towards a low-carbon, renewable energy based electricity supply. This article presents the evaluation of a novel low-head pumped hydro storage system designed for coastal environments and shallow seas. The proposed system addresses some of the challenges of low-head pumped hydro storage including the need for larger flow rates and reservoirs as well as the requirement of machinery with high efficiencies across a wide operating range to accommodate larger changes in gross head during storage cycles. It includes several units of contra-rotating reversible pump-turbines connected to axial-flux motor generators within a ring dike, as well as dedicated machine- and grid-side control. The technology allows for independent control of each runner, making it possible to adapt to the specific operating conditions of low-head systems. In this work, a numerical approach is used to simulate the system's performance and dynamic behaviour under various operational conditions, including energy generation, storage, and grid support of a 1 GW system with 4 GWh of storage capacity. The potential system performance for energy balancing cycles is evaluated, and a sensitivity analysis is conducted to assess the influence of scaling the motor-generators on performance and footprint of the plant. Additionally, the capability and limitations of the system to respond to grid demand fluctuations and provide frequency regulation services are assessed. The results demonstrate that the low-head pumped hydro storage system is a viable large-scale energy storage solution, capable of round-trip efficiencies above 70% across a wide operating range. By increasing the maximum power of the electric machines, the maximum head range of the whole system is increased which correlates with a threefold increase in energy density per unit area. The dynamic simulations further show that the system can rapidly change its power output allowing it to provide frequency regulation services. Allocating 20% of its nominal power as a reserve, the new power setpoints can be reached within a maximum of 5 s independent of its initial state of charge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fb1099fd48ef98a13dbd32c35f204bcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fb1099fd48ef98a13dbd32c35f204bcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | TORCHEC| TORCHBruno Schuermans; Jonas Moeck; Audrey Blondé; Bayu Dharmaputra; Nicolas Noiray;The Rayleigh index has been used for decades by a large number of researchers as an indicator to determine if a flame is driving or damping thermoacoustic interaction mechanisms. The use of the Rayleigh criterion has found applications in rocket combustors, gas turbine combustion technology and basic combustion research. The global Rayleigh index or integral is obtained by integrating the product of heat release rate and pressure fluctuations over space and time. Depending on the phase between pressure oscillations and heat release rate response, the oscillations can be enhanced or damped. It is commonly assumed in literature that the sign of the Rayleigh index from steady state data can be used to determine if the thermoacoustic feedback loop is stabilizing or destabilizing. However, we show in this paper that under fairly general conditions, a correctly measured Rayleigh index is always positive if evaluated from statistically stationary data. This proves to be true even if the heat release rate response to pressure fluctuations is in phase opposition to those pressure fluctuations. This is shown in a straightforward manner by substituting the wave equation with a heat release rate source term into the Rayleigh index. This was verified experimentally on a fully premixed combustion system by measuring the flame chemiluminescence using a photo multiplier and pressure fluctuations using a microphone placed sufficiently close to the flame to ensure acoustic compactness for the frequency range of interest. A large range of operating conditions have been tested, spanning linearly stable and unstable stationary thermoacoustic states, respectively corresponding to resonance or a limit cycle driven by the inherent stochastic forcing from the turbulent combustion noise. The experimental results corroborated the analytic finding: the Rayleigh index is found to be positive for all frequencies and all operating conditions. Proceedings of the Combustion Institute, 39 (4) ISSN:1540-7489 ISSN:1873-2704
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2022.08.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2022.08.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2022 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, Justus; Truijen, Daan; Fahlbeck, Jonathan; Gans, Luiz Henrique Accorsi; +9 AuthorsHoffstaedt, Justus; Truijen, Daan; Fahlbeck, Jonathan; Gans, Luiz Henrique Accorsi; Qudaih, Mohammed; Laguna, Antonio Jarquin; Kooning, Jeroen De; Stockman, Kurt; Nilsson, Håkan; Storli, Pål-Tore; Engel, Bernd; Marence, Miroslav; Bricker, Jeremy;To counteract a potential reduction in grid stability caused by a rapidly growing share of intermittent renewable energy sources within our electrical grids, large scale deployment of energy storage will become indispensable. Pumped hydro storage is widely regarded as the most cost-effective option for this. However, its application is traditionally limited to certain topographic features. Expanding its operating range to lowhead scenarios could unlock the potential of widespread deployment in regions where so far it has not yet been feasible. This review aims at giving a multi-disciplinary insight on technologies that are applicable for low-head (2-30 m) pumped hydro storage, in terms of design, grid integration, control, and modelling. A general overview and the historical development of pumped hydro storage are presented and trends for further innovation and a shift towards application in low-head scenarios are identified. Key drivers for future deployment and the technological and economic challenges to do so are discussed. Based on these challenges, technologies in the field of pumped hydro storage are reviewed and specifically analysed regarding their fitness for low-head application. This is done for pump and turbine design and configuration, electric machines and control, as well as modelling. Further aspects regarding grid integration are discussed. Among conventional machines, it is found that, for high-flow low-head application, axial flow pump-turbines with variable speed drives are the most suitable. Machines such as Archimedes screws, counter-rotating and rotary positive displacement reversible pump-turbines have potential to emerge as innovative solutions. Coupled axial flux permanent magnet synchronous motor-generators are the most promising electric machines. To ensure grid stability, grid-forming control alongside bulk energy storage with capabilities of providing synthetic inertia next to other ancillary services are required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::cd86b81949927249f4e184c0eb07fa50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::cd86b81949927249f4e184c0eb07fa50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project milestone , Other literature type 2019Publisher:Zenodo Funded by:EC | SFERA-IIIEC| SFERA-IIIAuthors: Chotard, Thierry; Guillot, Emmanuel;Materials used in solar receivers are exposed to high stresses, i.e. high temperatures (up to 1000° C in current solar towers, 1400°C for next generations, resp. 350 and 700°C for linear concentrators); high spatial thermal gradients (mainly due to the non-uniform concentrated solar irradiation) and high dynamic thermal gradient (e.g. fast during cloud passing or slow due to the daily cycling from dawn till dusk). Due to these very severe conditions, the materials degrade over time, their properties change, leading to reduced performance and ultimately to the failure and the ruin of the associated structure, increasing the cost of operation. Accurate in-situ measurements are required in order to select the materials (development and qualification stages with SFERA-III Research Infrastructures) or improve their lifetime and the optimal operation of a solar plant (commercial stage). However, the health evaluation of solar receivers is typically observed subjectively during downtime at night, or by sampling parts sent for laboratory analysis (MEB, XRD, chemistry...). Thanks to recent unique advances, it can be envisaged to be determined objectively in-situ using acoustic techniques, as commonly used in infrastructure buildings such as bridges, sky-scrapers, dams or nuclear power plants. A subset of these techniques has been successfully tested and derived for concentrated solar conditions within SFERA-II as worldwide pioneers using a research solar furnace, carrying on much further the SFERA-I developments about accelerated ageing setups and protocols to assess receivers resistance. Yet enhancements of this work are required in order to further interpret the observed data into broad degradation mechanisms (delaminations, cracks...) which will allow determining the actual remaining margin of the receiver of demonstration or commercial solar plants. This report presents the assessment and verification of the feasibility of the location of damaging events on a real solar receiver while deploying convenient and simple sensor location. These first steps verification were operated at room temperature and successfully demonstrated the potential of both the location and the identification of impending solar receivers damage thanks to a single acoustic ultrasonic sensor and data processing. Report for achievement of Milestone MS24 of European project SFERA-III, WP9, T1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 67visibility views 67 download downloads 46 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2023 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Fahlbeck, Jonathan; Nilsson, Håkan; Salehi, Saeed; Arabnejad Khanouki, Mohammad Hossein;To meet the demands of a larger share of the electrical energy produced by intermittent renewable energy sources, an increasing amount of plannable energy sources is needed. One solution to handle this is to increase the amount of energy storage in the electrical grids. The most widespread energy storage technology today is by far pumped hydro storage (PHS). In an attempt to enable PHS at low-head sites, the ALPHEUS (augmenting grid stability through low head pumped hydro energy utilization and storage) EU Horizon 2020 research project was formed. In ALPHEUS, new axial flow, low-head, contra-rotating pump-turbine (CRPT) designs are investigated. A CRPT has two individual runners rotating in opposite directions. CRPTs developed within the ALPHEUS project have already been thoroughly analysed at stationary and transient operating conditions by the authors. However, the effects on the CPRT's performance due to potential cavitation on the runner blade surfaces have previously not been investigated. For that reason, the current study focuses on running cavitation simulations on a model scale CRPT using the OpenFOAM computational fluid dynamics (CFD) software. In the CFD simulations, cavitation is modelled as a two-phase liquid-vapour mixture using the interPhaseChangeDyMFoam solver. The two runner domains have a prescribed solid body rotation. Condensation and evaporation processes are handled with the Schnerr-Sauer model. Turbulence is managed with the k-omega shear stress transport-scale adaptive simulation (kOmegaSSTSAS) model. Flow-driving pressure differences over the computational domain are achieved with the headLossPressure boundary condition to emulate a larger experimental test facility of which the CRPT is part. Figure 1 shows a snapshot in time of an iso-surface (light blue) of cavitating cloud with alpha_liquid=0.9 in turbine mode. At this operating point, a small amount of cavitating flow is found by the suction side of the leading edges of the left runner, which is facing a lower reservoir. In Figure 2, the same type of iso-surface is shown, however now in pump mode. It is seen that the pump mode operating condition is much worse than the turbine mode. The cavitating cloud covers most of the suction side of the left runner, additionally, the tip-clearance region is also exposed to cavitation. Furthermore, traces of cavitation are found on the leading edges of the right runner as well as on the left small-support struts. It is thus important to, at least, analyse the pump mode to determine if and how much cavitation affects the CRPS's operating performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::84fdbfad9df4f9585ea57e1a1ac72e51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::84fdbfad9df4f9585ea57e1a1ac72e51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | SOLWARIS, EC | WASCOPEC| SOLWARIS ,EC| WASCOPAuthors: Estibaliz Aranzabe; Leire Ruiz Rubio; Jon Ander Sarasua; José Luis Vilas Vilela;Many industrial and biological interfacial processes, such as welding and breathing depend directly on wettability and surface tension phenomena. The most common methods to control the wettability are based on modifying the properties of the fluid or the substrate. The present work focuses on the use of high-frequency acoustic waves (ultrasound) for the same purpose. It is well known that ultrasound can effectively clean a surface by acoustic cavitation, hence ultrasonic cleaning technology. Besides the cleaning process itself, many authors have observed an important wettability enhancement when liquids are exposed to low and high (ultrasonic) frequency vibration. Ultrasound goes one step further as it can instantly adjust the contact angle by tuning the vibration amplitude, but there is still a lack of comprehension about the physical principles that explain this phenomenon. To shed light on it, a thermodynamic model describing how ultrasound decreases the contact angle in a three-phase wetting system has been developed. Moreover, an analytical and experimental research has been carried out in order to demonstrate that ultrasound is an important competitor to surfactants in terms of energy efficiency and environmental friendliness.
Ultrasonics Sonochem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultsonch.2021.105768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ultrasonics Sonochem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultsonch.2021.105768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2022 SwedenPublisher:Informa UK Limited Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, J. P.; Jarquin-Laguna, Antonio; Fahlbeck, Jonathan; Nilsson, Håkan;To tackle the growing demand for grid-scale energy storage, the ALPHEUS project proposes a novel low-head pumped hydro storage system aimed for coastal application in countries where the topography does not allow for traditional high-head storage. This system consists of a reversible pump-turbine technology with two contra-rotating runners coupled to their respective axial-flux motor-generators as well as a dedicated control, optimising for energy balancing and the provision of ancillary services. To better understand the integration and dynamic interaction of the individual components of the plant and to allow for the simulation of a wide variety of operating conditions and scenarios, this research aims at developing a system model coupling the hydraulic, mechanical and electrical components. Numerical results are compared and verified based on CFD simulations. While some inaccuracies have to be expected, the comparison shows an overall good match with only minor deviations in dynamic behaviour and steady state results.
Chalmers Research arrow_drop_down https://doi.org/10.1201/978100...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9781003360773-85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chalmers Research arrow_drop_down https://doi.org/10.1201/978100...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9781003360773-85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Contribution for newspaper or weekly magazine 2023 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSBricker, Jeremy; Nilsson, Håkan; Storli, Pål-Tore; Truijen, Daan; De Kooning, Jeroen; Laguna, Antonio; Terheiden, Kristina; Engel, Bernd; Goseberg, NIls; Moll, Roelof;Penetration of intermittent renewable energy sources into the power grid requires large-scale energy storage to ensure grid stability. Pumped Hydro Energy Storage (PHES) is among the most mature, environmentally friendly, and economical energy storage technologies, but has traditionally only been feasible at sites with large natural topographic gradients. ALPHEUS addresses this by developing reversible pump-turbines efficient at low heads, that operate between an enclosed inner basin (that functions as the upper or lower reservoir) and a shallow sea or lake.
Chalmers Research arrow_drop_down Chalmers ResearchContribution for newspaper or weekly magazine . 2023Data sources: Chalmers Researchadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::58f3f14071cac68144be69da6b8227d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chalmers Research arrow_drop_down Chalmers ResearchContribution for newspaper or weekly magazine . 2023Data sources: Chalmers Researchadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::58f3f14071cac68144be69da6b8227d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Fahlbeck, Jonathan; Nilsson, Håkan; Salehi, Saeed;With the increased amount of energy produced from variable renewable energy sources, such as wind and solar power, the need to store energy increases. The reason is that it is necessary to cope with the variation in energy being produced by the renewables to stabilise the electrical grids. The most widely used technology for energy storage on a large scale is today pumped hydro storage (PHS). For PHS to be economically feasible, a high head is typically required, which puts topographical constraints on where it can be built. However, the EU project ALPHEUS aims to develop PHS for low-head applications, hence allowing PHS at yet unexplored sites. In the project, new reversible counter-rotating pump-turbine (CRPT) concepts are explored as an alternative runner design for low-head situations. The CRPT consists of two runners rotating in opposite direction from one another and it is suggested that it can reach higher efficiencies and be more compact compared to a single runner arrangement. In the present work a model counter-rotating pump-turbine for the ALPHEUS project is numerically analysed with computational fluid dynamics (CFD) simulations. The simulations are carried out using unsteady CFD in OpenFOAM-v2012. In the simulations, the two runners rotate individually via prescribing a solid body rotation to the runner domains. The individually rotating runners causes a intricate rotor-rotor interaction which is resolved by the numerical model. An example of this is shown in Figure, where a complex vortical structure is developing by the runners and support-structures. Furthermore, the CRPT is in reality part of large hydraulic system which effects the performance of the machine. The system includes bends, valves, long pipes, and two large water reservoirs. To restrict the size of the computational domain, the novel \verb|headLossPressure| boundary condition, developed by Fahlbeck et al., is used to include the main effects of the hydraulic system. To summarise, this study will show the potentials with a CPRT in a PHS application through CFD simulations, explain the used numerical framework, and demonstrate a use case for the new headLossPressure boundary condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::e407be254947646b9730771ab5c3963a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::e407be254947646b9730771ab5c3963a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 16 Jul 2020 Switzerland, United KingdomPublisher:Wiley Funded by:EC | BIOELEEC| BIOELEWenyu Wang; Patrick N. Stipp; Patrick N. Stipp; Yan Yan Shery Huang; Karim Ouaras; Saeed Fathi;pmid: 32510871
AbstractFreely suspended nanofibers, such as spider silk, harnessing their small diameter (sub‐micrometer) and spanning fiber morphology, behave as a nonresonating acoustic sensor. The associated sensing characteristics, departing from conventional resonant acoustic sensors, could be of tremendous interest for the development of high sensitivity, broadband audible sensors for applications in environmental monitoring, biomedical diagnostics, and internet‐of‐things. Herein, a low packing density, freely suspended nanofiber mesh with a piezoelectric active polymer is fabricated, demonstrating a self‐powered acoustic sensing platform with broad sensitivity bandwidth covering 200–5000 Hz at hearing‐safe sound pressure levels. Dynamic near‐field electrospinning is developed to fabricate in situ poled poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) nanofiber mesh (average fiber diameter ≈307 nm), exhibiting visible light transparency greater than 97%. With the ability to span the nanomesh across a suspension distance of 3 mm with minimized fiber stacking (≈18% fiber packing density), individual nanofibers can freely imitate the acoustic‐driven fluctuation of airflow in a collective manner, where piezoelectricity is harvested at two‐terminal electrodes for direct signal collection. Applications of the nanofiber mesh in music recording with good signal fidelity are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202000581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202000581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, Justus Peter; Truijen, Daan; Laguna, Antonio Jarquin; De Kooning, Jeroen; +3 AuthorsHoffstaedt, Justus Peter; Truijen, Daan; Laguna, Antonio Jarquin; De Kooning, Jeroen; Stockman, Kurt; Fahlbeck, Jonathan; Nilsson, Håkan;Abstract Large-scale energy storage solutions are crucial to ensure grid stability and reliability in the ongoing energy transition towards a low-carbon, renewable energy based electricity supply. This article presents the evaluation of a novel low-head pumped hydro storage system designed for coastal environments and shallow seas. The proposed system addresses some of the challenges of low-head pumped hydro storage including the need for larger flow rates and reservoirs as well as the requirement of machinery with high efficiencies across a wide operating range to accommodate larger changes in gross head during storage cycles. It includes several units of contra-rotating reversible pump-turbines connected to axial-flux motor generators within a ring dike, as well as dedicated machine- and grid-side control. The technology allows for independent control of each runner, making it possible to adapt to the specific operating conditions of low-head systems. In this work, a numerical approach is used to simulate the system's performance and dynamic behaviour under various operational conditions, including energy generation, storage, and grid support of a 1 GW system with 4 GWh of storage capacity. The potential system performance for energy balancing cycles is evaluated, and a sensitivity analysis is conducted to assess the influence of scaling the motor-generators on performance and footprint of the plant. Additionally, the capability and limitations of the system to respond to grid demand fluctuations and provide frequency regulation services are assessed. The results demonstrate that the low-head pumped hydro storage system is a viable large-scale energy storage solution, capable of round-trip efficiencies above 70% across a wide operating range. By increasing the maximum power of the electric machines, the maximum head range of the whole system is increased which correlates with a threefold increase in energy density per unit area. The dynamic simulations further show that the system can rapidly change its power output allowing it to provide frequency regulation services. Allocating 20% of its nominal power as a reserve, the new power setpoints can be reached within a maximum of 5 s independent of its initial state of charge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fb1099fd48ef98a13dbd32c35f204bcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fb1099fd48ef98a13dbd32c35f204bcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | TORCHEC| TORCHBruno Schuermans; Jonas Moeck; Audrey Blondé; Bayu Dharmaputra; Nicolas Noiray;The Rayleigh index has been used for decades by a large number of researchers as an indicator to determine if a flame is driving or damping thermoacoustic interaction mechanisms. The use of the Rayleigh criterion has found applications in rocket combustors, gas turbine combustion technology and basic combustion research. The global Rayleigh index or integral is obtained by integrating the product of heat release rate and pressure fluctuations over space and time. Depending on the phase between pressure oscillations and heat release rate response, the oscillations can be enhanced or damped. It is commonly assumed in literature that the sign of the Rayleigh index from steady state data can be used to determine if the thermoacoustic feedback loop is stabilizing or destabilizing. However, we show in this paper that under fairly general conditions, a correctly measured Rayleigh index is always positive if evaluated from statistically stationary data. This proves to be true even if the heat release rate response to pressure fluctuations is in phase opposition to those pressure fluctuations. This is shown in a straightforward manner by substituting the wave equation with a heat release rate source term into the Rayleigh index. This was verified experimentally on a fully premixed combustion system by measuring the flame chemiluminescence using a photo multiplier and pressure fluctuations using a microphone placed sufficiently close to the flame to ensure acoustic compactness for the frequency range of interest. A large range of operating conditions have been tested, spanning linearly stable and unstable stationary thermoacoustic states, respectively corresponding to resonance or a limit cycle driven by the inherent stochastic forcing from the turbulent combustion noise. The experimental results corroborated the analytic finding: the Rayleigh index is found to be positive for all frequencies and all operating conditions. Proceedings of the Combustion Institute, 39 (4) ISSN:1540-7489 ISSN:1873-2704
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2022.08.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2022.08.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2022 Sweden Funded by:EC | ALPHEUSEC| ALPHEUSAuthors: Hoffstaedt, Justus; Truijen, Daan; Fahlbeck, Jonathan; Gans, Luiz Henrique Accorsi; +9 AuthorsHoffstaedt, Justus; Truijen, Daan; Fahlbeck, Jonathan; Gans, Luiz Henrique Accorsi; Qudaih, Mohammed; Laguna, Antonio Jarquin; Kooning, Jeroen De; Stockman, Kurt; Nilsson, Håkan; Storli, Pål-Tore; Engel, Bernd; Marence, Miroslav; Bricker, Jeremy;To counteract a potential reduction in grid stability caused by a rapidly growing share of intermittent renewable energy sources within our electrical grids, large scale deployment of energy storage will become indispensable. Pumped hydro storage is widely regarded as the most cost-effective option for this. However, its application is traditionally limited to certain topographic features. Expanding its operating range to lowhead scenarios could unlock the potential of widespread deployment in regions where so far it has not yet been feasible. This review aims at giving a multi-disciplinary insight on technologies that are applicable for low-head (2-30 m) pumped hydro storage, in terms of design, grid integration, control, and modelling. A general overview and the historical development of pumped hydro storage are presented and trends for further innovation and a shift towards application in low-head scenarios are identified. Key drivers for future deployment and the technological and economic challenges to do so are discussed. Based on these challenges, technologies in the field of pumped hydro storage are reviewed and specifically analysed regarding their fitness for low-head application. This is done for pump and turbine design and configuration, electric machines and control, as well as modelling. Further aspects regarding grid integration are discussed. Among conventional machines, it is found that, for high-flow low-head application, axial flow pump-turbines with variable speed drives are the most suitable. Machines such as Archimedes screws, counter-rotating and rotary positive displacement reversible pump-turbines have potential to emerge as innovative solutions. Coupled axial flux permanent magnet synchronous motor-generators are the most promising electric machines. To ensure grid stability, grid-forming control alongside bulk energy storage with capabilities of providing synthetic inertia next to other ancillary services are required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::cd86b81949927249f4e184c0eb07fa50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4160::cd86b81949927249f4e184c0eb07fa50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project milestone , Other literature type 2019Publisher:Zenodo Funded by:EC | SFERA-IIIEC| SFERA-IIIAuthors: Chotard, Thierry; Guillot, Emmanuel;Materials used in solar receivers are exposed to high stresses, i.e. high temperatures (up to 1000° C in current solar towers, 1400°C for next generations, resp. 350 and 700°C for linear concentrators); high spatial thermal gradients (mainly due to the non-uniform concentrated solar irradiation) and high dynamic thermal gradient (e.g. fast during cloud passing or slow due to the daily cycling from dawn till dusk). Due to these very severe conditions, the materials degrade over time, their properties change, leading to reduced performance and ultimately to the failure and the ruin of the associated structure, increasing the cost of operation. Accurate in-situ measurements are required in order to select the materials (development and qualification stages with SFERA-III Research Infrastructures) or improve their lifetime and the optimal operation of a solar plant (commercial stage). However, the health evaluation of solar receivers is typically observed subjectively during downtime at night, or by sampling parts sent for laboratory analysis (MEB, XRD, chemistry...). Thanks to recent unique advances, it can be envisaged to be determined objectively in-situ using acoustic techniques, as commonly used in infrastructure buildings such as bridges, sky-scrapers, dams or nuclear power plants. A subset of these techniques has been successfully tested and derived for concentrated solar conditions within SFERA-II as worldwide pioneers using a research solar furnace, carrying on much further the SFERA-I developments about accelerated ageing setups and protocols to assess receivers resistance. Yet enhancements of this work are required in order to further interpret the observed data into broad degradation mechanisms (delaminations, cracks...) which will allow determining the actual remaining margin of the receiver of demonstration or commercial solar plants. This report presents the assessment and verification of the feasibility of the location of damaging events on a real solar receiver while deploying convenient and simple sensor location. These first steps verification were operated at room temperature and successfully demonstrated the potential of both the location and the identification of impending solar receivers damage thanks to a single acoustic ultrasonic sensor and data processing. Report for achievement of Milestone MS24 of European project SFERA-III, WP9, T1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 67visibility views 67 download downloads 46 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu