- home
- Advanced Search
- Energy Research
- EU
- Energy Research
- EU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 GermanyPublisher:Elsevier BV Funded by:EC | TRUSTEC| TRUSTAuthors:Alexandru Bogdan Tatomir;
Alexandru Bogdan Tatomir
Alexandru Bogdan Tatomir in OpenAIREMario Schaffer;
Alexander Kissinger; Johannes Hommel; +4 AuthorsMario Schaffer
Mario Schaffer in OpenAIREAlexandru Bogdan Tatomir;
Alexandru Bogdan Tatomir
Alexandru Bogdan Tatomir in OpenAIREMario Schaffer;
Alexander Kissinger; Johannes Hommel; Philipp Nuske;Mario Schaffer
Mario Schaffer in OpenAIRETobias Licha;
Tobias Licha
Tobias Licha in OpenAIRERainer Helmig;
Martin Sauter;Rainer Helmig
Rainer Helmig in OpenAIREAbstract Tracer methods represent techniques commonly used for the characterization and for the monitoring of transport processes in geo-reservoirs (e.g., CO2 storage). The current short communication addresses the development of a conceptual, mathematical and numerical model for a new tracer class (KIS tracers, Schaffer et al., 2013) useful for the characterization of fluid–fluid interfacial areas during supercritical CO2 injection into deep saline aquifers. This tracer type has the potential to quantify the amount of fluid–fluid interfacial areas, important for the quantification of reactions at the fluid interface, which can implicitly lead to optimized injection strategies, a better assessment of the extent of the CO2 plume and of the storage efficiency. The presented modeling approach overcomes the drawback of the current standard multiphase multicomponent models, which ignore kinetics of mass transfer over the interfacial area between the CO2 and brine and consider only the volumetric fraction of the fluids or their mass and molar fractions, respectively. In this model, the concept of a specific interfacial area obtained from pore network modeling is used to complement the constitutive relationships between capillary pressure and saturation. It is a two-phase four component flow and transport model with a kinetic mass transfer of tracers between the two fluids and taking the dissolution of CO2 in brine into account. Two numerical simulation scenarios are shown as examples for the design of experimental work in laboratory and eventually in the field. The modeling approach follows the assumptions of previous experimental work (Schaffer et al., 2013). Their implications are investigated by sensitivity analyses to narrow the physical range of reaction rates for further experiments and molecular tracer design. Both examples indicate that the tracer concentration is sensitive with respect to the interfacial area and, therefore, KIS tracer utilization both in the lab and in the field appear to be feasible for implementation.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.11.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.11.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 GermanyPublisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGAuthors:Mario Schaffer;
Friedrich Maier;Mario Schaffer
Mario Schaffer in OpenAIRETobias Licha;
Martin Sauter;Tobias Licha
Tobias Licha in OpenAIREThe storage of supercritical carbon dioxide in deep saline aquifers requires new techniques to assess plume spreading, storage efficiencies and operational strategies after and during injections. In this work, a new class of reactive tracers (KIS tracers) planned to be used for the characterization of interfacial areas between supercritical CO2 and formation brine is presented. The implementation of a time-dependent hydrolysis reaction at the interface enables to investigate the development of the CO2/brine interface. Besides the basic concept for these novel tracers and the methodology for a suitable target molecular design, the desired tracer properties as well as the exemplary synthesis of first promising compounds are presented here. Additionally, the first experimental results of an analog study in a static two-phase batch system are shown and evaluated with a newly developed macroscopic model. Subsequently, the numerical forward modeling of different functions for the interfacial area change is described. The first results are promising and show the potential for new applications of KIS tracers after further research.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018International Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018International Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGThomas Fierz; Auli Niemi; Kristina Rasmusson; Vladimir Shtivelman; Jacob Bensabat; Michael Gendler; G. Wiegand; Maria Rasmusson; Fritjof Fagerlund; Julia Ghergut; Martin Sauter;Tobias Licha;
Tobias Licha
Tobias Licha in OpenAIREAbstractThis paper presents the experimental plans and designs as well as examples of predictive modeling of a pilot-scale CO2 injection experiment at the Heletz site (Israel). The overall objective of the experiment is to find optimal ways to characterize CO2 -relevant in-situ medium properties, including field-scale residual and dissolution trapping, to explore ways of characterizing heterogeneity through joint analysis of different types of data, and to detect leakage. The experiment will involve two wells, an injection well and a monitoring well. Prior to the actual CO2 injection, hydraulic, thermal and tracer tests will be carried out for standard site characterization. The actual CO2 injection experiments will include (i) a single well injection-withdrawal experiment, with the main objective to estimate in-situ residual trapping and (ii) a two-well injection-withdrawal test with injection of CO2 in a dipole mode (injection of CO2 in one well with simultaneous withdrawal of water in the monitoring well), with the objective to understand the CO2 transport in heterogeneous geology as well as the associated dissolution and residual trapping. Tracers will be introduced in both experiments to further aid in detecting the development of the phase composition during CO2 transport. Geophysical monitoring will also be implemented. By means of modeling, different experimental sequences and injection/withdrawal patterns have been analyzed, as have parameter uncertainties. The objectives have been to (i) evaluate key aspects of the experimental design, (ii) to identify key parameters affecting the fate of the CO2 and (iii) to evaluate the relationships between measurable quantities and parameters of interest.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu