Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
80 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 11. Sustainability
  • EU
  • Energy and Buildings

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Salvati, A;
    Salvati, A
    ORCID
    Harvested from ORCID Public Data File

    Salvati, A in OpenAIRE
    Kolokotroni, M;

    Data availability: Data will be made available on request. ; Copyright © 2023 The Author(s). Urban settings and climate change both impact on energy use and thermal comfort inside buildings. This paper first presents a study of changes in energy demand in residential buildings considering the overlapping effect of climate change and urban heat island intensity in two European locations; Cadiz (Spain) and London (United Kingdom), representing temperate and hot European climates and moderate and dense urban settings. Future-urban weather files were generated and simulations were run considering energy demand and indoor thermal comfort. In hot climate regions such as the one of Cadiz, future climate will increase the cooling demand and the additional impact of the UHI leads to a further increase of up to +28% of total energy demand compared to the current climate without considering urban effects. Future-urban weather conditions will be detrimental also for buildings in London, where the annual energy demand is predicted to increase by up to the 16% if future climate and urban effects are included. This is due to a higher increase in cooling demand compared to the reduction for the heating need. The paper also presents a method to take into account microclimatic conditions in naturally ventilated buildings, especially the effect of wind variations around the building which impacts natural ventilation rates. Air and surface temperature and wind speeds were studied using ENVImet and the resulting microclimatic conditions were used as inputs to the EnergyPlus Airflow Network model for the calculation of the building ventilation rates. It was found that ventilation rates are reduced (in comparison to meteorological weather files) and this reduction impacts negatively on internal operative temperatures. A thermal comfort analysis was carried out indicating that the selection of a suitable weather file and microclimatic conditions is essential for more accurate predictions of internal thermal comfort and will assist in ...

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    hybrid
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: María I. Arriortua; orcid Aitor Larrañaga;
    Aitor Larrañaga
    ORCID
    Harvested from ORCID Public Data File

    Aitor Larrañaga in OpenAIRE
    Ana Aranzabe; Estibaliz Aranzabe; +2 Authors

    Materials science offers solutions that when are combined can offer important energy savings in the building sector. In this study, high reflectance coating and thermal storage capacity are combined with the aim of improving energy efficiency in buildings. For this issue a multifunctional pigment having a phase change material adsorbed on its surface and a high total solar reflectance has been manufactured. The total solar reflectance of the pigment will make the paint to reflect the sunlight radiation in the infrared part of the spectrum reducing the amount of absorbed radiation. This high reflection provides a surface level effect as is a passive stimulus-responsive solution that acts with sunlight radiation. On the other hand, the thermal storage capability provides a bulk level effect as is passive stimulus-responsive solution acting by temperature changes, making it possible to use constructive materials as a thermal energy storage media. The preparation process is described and the pigment is characterized conveniently. The thermal performance of corresponding pigmented coatings was evaluated by an experiment simulation in which different boxes were covered with the coating containing the multifunctional pigment and traditional pigmented coating on their tops. The indoor air temperature and the interior temperature of the substrate were measured obtaining differences of 4–5°C. European Union Seventh Framework Programme, FP7-NMP-2010-Small-5 (under grant agreement no 280393) Dpto. Educación, Política Lingüística y Cultura of the Basque Goverment, IT-630-13 Ministerio de Ciencia e Innovación, MAT2013-42092-R Engineering and Physical Sciences Research Council, EP/I003932

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    hybrid
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Nives DellaValle;
    Nives DellaValle
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Nives DellaValle in OpenAIRE
    orcid Adriano Bisello;
    Adriano Bisello
    ORCID
    Harvested from ORCID Public Data File

    Adriano Bisello in OpenAIRE
    orcid Jessica Balest;
    Jessica Balest
    ORCID
    Harvested from ORCID Public Data File

    Jessica Balest in OpenAIRE

    Abstract Our study proposes to analyze from a social practice and behavioural economics perspective the factors that influence a mismatch between energy behaviour and retrofit efficacy in the context of social housing. Retrofit interventions not only have the potential of improving energy efficiency of buildings, but they also change the context in which individuals live, therefore improving their wellbeing at home. However, the surrounding social context might suggest some context-specific practices and cognitive biases that negatively influence energy behaviour, creating a gap between expected and actual energy performance. Addressing the context-specific practices and cognitive biases is especially necessary when it comes to social housing. Social housing neighbourhoods are not only low-energy efficient, but also socially vulnerable. This context might shape specific practices and make salient specific cognitive biases which require special consideration within an energy retrofit program. The ambition of this study is to understand the context-specific practices and cognitive biases that characterize the pre-refurbishment phase of a retrofit program and to identify the ones that can be used as behavioural and social levers to enhance retrofit efficacy. To this aim, we analyze the results of a questionnaire administered to the tenants of a social housing district through the lenses of social practice theory and behavioural economics. Our results show that analysing tenants’ behaviour through an interdisciplinary social science approach allows to identify a range of context-specific variables that can be used as levers to align behaviour to retrofit interventions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim
    Access Routes
    Green
    hybrid
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article . 2018 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Lidia Navarro;
    Lidia Navarro
    ORCID
    Harvested from ORCID Public Data File

    Lidia Navarro in OpenAIRE
    orcid Alvaro de Gracia;
    Alvaro de Gracia
    ORCID
    Harvested from ORCID Public Data File

    Alvaro de Gracia in OpenAIRE
    Albert Castell; orcid Luisa F. Cabeza;
    Luisa F. Cabeza
    ORCID
    Harvested from ORCID Public Data File

    Luisa F. Cabeza in OpenAIRE

    Solar energy has been widely introduced in the building market to provide electricity, heating and domes-tic hot water for a sustainable development. However, the low-density and the mismatch between energysupply and demand make appropriate its combination with thermal energy storage (TES) systems. Theintegration of these technologies (solar thermal and TES) in the building design is a key aspect to reduceenergy consumption. Latent heat storage using phase change materials (PCM) presents an advantage incomparison to conventional sensible heat storage systems due to the required volume. In this context,an innovative system that integrates PCM inside the structural horizontal building component is pre-sented in this paper. The slab consisted of a prefabricated concrete element with 14 channels filled withmacro-encapsulated PCM which is used as a storage unit and a heating supply. In order to melt the PCMthe system is coupled to a solar air collector. The prototype is tested in an experimental facility locatedin Puigverd de Lleida (Spain) where its thermal performance is evaluated under real weather conditions.This study demonstrates the high potential of the concrete slab on reducing the energy consumptioncompared to a conventional heating system. The work partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER), ENE2015-64117-C5-3-R (MINECO/FEDER), and ULLE10-4E-1305). The authors wouldlike to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123) and thecity hall of Puigverd de Lleida. This project has received fundingfrom the Eurpean Commission Seventh Framework Programme(FP/2007-2013) under Grant agreement Nº PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES). Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan dela Cierva, FJCI-2014-19940.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy and Buildings
    Article . 2016 . Peer-reviewed
    addClaim
    Access Routes
    Green
    hybrid
    67
    citations67
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy and Buildings
      Article . 2016 . Peer-reviewed
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Luisa F. Cabeza;
    Luisa F. Cabeza
    ORCID
    Harvested from ORCID Public Data File

    Luisa F. Cabeza in OpenAIRE
    orcid Alvaro de Gracia;
    Alvaro de Gracia
    ORCID
    Harvested from ORCID Public Data File

    Alvaro de Gracia in OpenAIRE
    Anna Laura Pisello;

    The need to achieve energy efficiency standards in new and existing buildings has triggered both research and design practice aimed at reducing their carbon footprint and improving their indoor comfort and functionality conditions. In this view, a dedicated scientific effort has to be spent while dealing with historical architectures needing to preserve their key testimonial knowledge into the society. Therefore, tailored retrofit strategies have been investigated and implemented without compromising their architectural value, especially when new uses are foreseen in those buildings. This review classifies different examples of the use of energy efficiency approaches and the integration of renewable energies in historical buildings, including solar and geothermal energy, and the use of heat pumps and other high-efficiency Heating Ventilation and Air Conditioning systems. Prof. Luisa F. Cabeza would like to acknowledge the Spanish Government for the funding PRX17/00221, that allowed her to visit University of Perugia during 6 months. Prof. Cabeza would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curiegrant agreement No 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article . 2018 . Peer-reviewed
    addClaim
    Access Routes
    Green
    hybrid
    99
    citations99
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article . 2018 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article . 2018 . Peer-reviewed
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Inger Andresen;
    Inger Andresen
    ORCID
    Harvested from ORCID Public Data File

    Inger Andresen in OpenAIRE
    Tonje Healey Trulsrud; Luca Finocchiaro; Alessandro Nocente; +8 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    hybrid
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Edīte Biseniece;
    Edīte Biseniece
    ORCID
    Harvested from ORCID Public Data File

    Edīte Biseniece in OpenAIRE
    Gatis Žogla; orcid Agris Kamenders;
    Agris Kamenders
    ORCID
    Harvested from ORCID Public Data File

    Agris Kamenders in OpenAIRE
    Reinis Purviņš; +3 Authors

    Historic buildings built before 1945 make up a significant part of the building stock in the European Union. They also contribute to the greenhouse gas emissions due to high energy consumption. However, policy makers and building owners are facing “building energy efficiency-heritage value” dilemma when, on the one hand it is important to preserve a building’s heritage value and on the other hand, energy consumption should be reduced significantly. Internal insulation is one of the energy efficiency measures that can be applied. However, this is one of the most challenging and complex energy efficiency measures due to changes in boundary conditions and hygrothermal behaviour of the wall, especially in cold climate. We aimed to study the thermal behaviour of two internal insulation materials applied to historic masonry building in a cold climate. We carried out long term in-situ measurements of heat flux and temperature for internal insulation with aerogel and vacuum insulation panels (VIP) in the case study building in the historic quarter of Riga, Latvia. The original walls are made of 51 cm thick calcium silicate bricks. They were poorly maintained and heavily damaged by moisture before energy efficiency renovation. After renovation the external surface of walls was painted with self-cleaning, water repellent hydrophobic facade paint. The energy efficiency renovation also included insulation of floor and roof, change of windows, new ventilation and air heat pump installation. The analysis of the thermal behaviour show that the masonry part of the wall is exposed to freezing risk for a significant number of days during the winter. Calcium silicate bricks are very sensitive to freeze-thaw damage therefore we carried out computer simulation for the assessment of hygrothermal behaviour. Results show that the calcium silicate masonry part of the internally insulated wall in cold climate leads to exposure to freeze-thaw damage if the moisture content of the brick is higher than the capillary saturation. This process strongly depends on unfavourable outdoor conditions for wall types with and without water repellent hydrophobic paint.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid G. Ferrarini;
    G. Ferrarini
    ORCID
    Harvested from ORCID Public Data File

    G. Ferrarini in OpenAIRE
    orcid Gianluca Cadelano;
    Gianluca Cadelano
    ORCID
    Harvested from ORCID Public Data File

    Gianluca Cadelano in OpenAIRE
    orcid A. Bortolin;
    A. Bortolin
    ORCID
    Harvested from ORCID Public Data File

    A. Bortolin in OpenAIRE
    orcid Paolo Bison;
    Paolo Bison
    ORCID
    Harvested from ORCID Public Data File

    Paolo Bison in OpenAIRE

    The existing building stock requires substantial interventions to meet the energy performance criteria imposed by the current standards. The installation of a new insulating layer into the building envelope is the most common energy retrofit measure. This strategy is usually focused only on steady state thermal conditions while it influences also the transient thermal behavior. However the on - site characterization of the building dynamic behavior is partially or totally neglected, due to the lack of a feasible investigation procedure. This may lead to a negative thermal performance of the building, paving the way to litigations between the contractor and the tenants. A novel measurement technique, based on infrared thermography, is proposed to investigate the dynamic behavior of the wall. Several wall samples are tested in laboratory with an experimental layout that resembled an outdoor installation, where a sinusoidal thermal stimulus is imposed on the back of the specimen. The surface temperature evolution over time is recorded with an infrared camera both on the front and on the back surfaces of the specimen, in order to measure the time-shift on a broad wall area. A key aspect of the proposed experimental procedure is that it could be applied to the on-site building survey, significantly improving the evaluation of the actual energy performance of the building. The obtained results are compared with a mathematical model showing good agreement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Omid Abrishambaf;
    Omid Abrishambaf
    ORCID
    Harvested from ORCID Public Data File

    Omid Abrishambaf in OpenAIRE
    Filipe Fernandes; orcid Tiago Pinto;
    Tiago Pinto
    ORCID
    Harvested from ORCID Public Data File

    Tiago Pinto in OpenAIRE
    Tiago Pinto; +3 Authors

    Abstract This paper proposes a novel Case Based Reasoning (CBR) application for intelligent management of energy resources in residential buildings. The proposed CBR approach enables analyzing the history of previous cases of energy reduction in buildings, and using them to provide a suggestion on the ideal level of energy reduction that should be applied in the consumption of houses. The innovations of the proposed CBR model are the application of the k -Nearest Neighbors algorithm (k-NN) clustering algorithm to identify similar past cases, the adaptation of Particle Swarm Optimization (PSO) meta-heuristic optimization method to optimize the choice of the variables that characterize each case, and the development of expert systems to adapt and refine the final solution. A case study is presented, which considers a knowledge base containing a set of scenarios obtained from the consumption of a residential building. In order to provide a response for a new case, the proposed CBR application selects the most similar cases and elaborates a response, which is provided to the SCADA House Intelligent Management (SHIM) system as input data. SHIM uses this specification to determine the loads that should be reduced in order to fulfill the reduction suggested by the CBR approach. Results show that the proposed approach is capable of suggesting the most adequate levels of reduction for the considered house, without compromising the comfort of the users.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy and Buildings
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2017
    License: CC BY NC ND
    Data sources: ZENODO
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    addClaim
    Access Routes
    Green
    hybrid
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility88
    visibilityviews88
    downloaddownloads255
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy and Buildings
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2017
      License: CC BY NC ND
      Data sources: ZENODO
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nilsson, Anders; orcid Wester, Misse;
    Wester, Misse
    ORCID
    Harvested from ORCID Public Data File

    Wester, Misse in OpenAIRE
    orcid Lazarevic, David;
    Lazarevic, David
    ORCID
    Harvested from ORCID Public Data File

    Lazarevic, David in OpenAIRE
    Brandt; +1 Authors

    Abstract Home energy management systems (HEMS), providing energy feedback and smart features through in-home displays, have the potential to support more sustainable household decisions concerning energy consumption. However, recent findings from European smart metering trials have reduced the optimism, suggesting only modest savings from energy feedback. In this paper, we investigate the potential of HEMS to foster reductions in energy use, focusing on a population segment of particular relevance; high-income and highly educated households, considered as early adopters of smart grid technologies. Covering 154 households participating in a field trial in a sustainable city district in Stockholm, Sweden during one year, this study draws on the analyses of smart meter electricity and hot tap water data and in-depth interviews to provide an increased understanding of how feedback and features are perceived, used, and acted upon, and resulting effects on awareness, behavior, and consumption. Our results show that impact on energy consumption varies widely across individual households, suggesting that households respond to energy feedback highly individually. Although HEMS may lead to increased awareness of energy consumption, as well as increased home comfort, several obstacles for energy consumption behavioral change are identified. Drawing from these findings, we suggest policy implications and key issues for future research.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2018
    Data sources: VIRTA
    Energy and Buildings
    Article . 2018 . Peer-reviewed
    addClaim
    115
    citations115
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2018
      Data sources: VIRTA
      Energy and Buildings
      Article . 2018 . Peer-reviewed
      addClaim