- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- BD
- FI
- Energy Research
- BD
- FI
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Rameez Arshad; Francesco Saccon; Pushan Bag; Avratanu Biswas; Claudio Calvaruso; Ahmad Farhan Bhatti; Steffen Grebe; Vincenzo Mascoli; Moontaha Mahbub; Fernando Muzzopappa; Alexandros Polyzois; Christo Schiphorst; Mirella Sorrentino; Simona Streckaité; Herbert van Amerongen; Eva‐Mari Aro; Roberto Bassi; Egbert J. Boekema; Roberta Croce; Jan P. Dekker; Rienk van Grondelle; Stefan Jansson; Diana Kirilovsky; Roman Kouřil; Sylvie Michel; Conrad W. Mullineaux; Klára Panzarová; Bruno Robert; Alexander V. Ruban; Ivo H. M. van Stokkum; Emilie Wientjes; Claudia Büchel;pmid: 35512089
pmc: PMC9237682
Abstract Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plphys/kiac175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plphys/kiac175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Rameez Arshad; Francesco Saccon; Pushan Bag; Avratanu Biswas; Claudio Calvaruso; Ahmad Farhan Bhatti; Steffen Grebe; Vincenzo Mascoli; Moontaha Mahbub; Fernando Muzzopappa; Alexandros Polyzois; Christo Schiphorst; Mirella Sorrentino; Simona Streckaité; Herbert van Amerongen; Eva‐Mari Aro; Roberto Bassi; Egbert J. Boekema; Roberta Croce; Jan P. Dekker; Rienk van Grondelle; Stefan Jansson; Diana Kirilovsky; Roman Kouřil; Sylvie Michel; Conrad W. Mullineaux; Klára Panzarová; Bruno Robert; Alexander V. Ruban; Ivo H. M. van Stokkum; Emilie Wientjes; Claudia Büchel;pmid: 35512089
pmc: PMC9237682
Abstract Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plphys/kiac175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plphys/kiac175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu